Skip to main content
Log in

A Simple Example of “Quantum Darwinism”: Redundant Information Storage in Many-Spin Environments

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the “objects of interest.” Exactly how this information is inscribed in the environment is essential for the emergence of “the classical” from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system’s state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of “the fittest information” (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment’s role in the quantum-classical transition beyond the traditional paradigm of decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Zurek (1998) Philos. Transact. R. Soc. Series A 356 1793 Occurrence Handle1998RSPTA.356.1793Z Occurrence Handle99e:81015

    ADS  MathSciNet  Google Scholar 

  2. W.H. Zurek (2000) Annalen der Physik 9 855 Occurrence Handle10.1002/1521-3889(200011)9:11/12<855::AID-ANDP855>3.0.CO;2-K Occurrence Handle2000AnP.....9..855Z Occurrence Handle000165750600005 Occurrence Handle2002i:81011

    Article  ADS  ISI  MathSciNet  Google Scholar 

  3. W.H. Zurek (2003) Rev. Mod. Phys. 75 715 Occurrence Handle10.1103/RevModPhys.75.715 Occurrence Handle2003RvMP...75..715Z Occurrence Handle2005b:81021

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Ollivier D. Poulin W.H. Zurek (2004) Phys. Rev. Lett. 93 220401 Occurrence Handle10.1103/PhysRevLett.93.220401 Occurrence Handle2004PhRvL..93v0401O

    Article  ADS  Google Scholar 

  5. Zurek W.H., arxiv.org/quant-ph/0308163 (2003).

  6. A. Peres (1995) Quantum Theory: Concepts and Methods, vol. 72 of Fundamental Theories of Physics Kluwer Academic Publishers Dordrecht, Boston

    Google Scholar 

  7. C.A. Fuchs A. Peres (2000) Phys. Today. 53 70

    Google Scholar 

  8. W.H. Zurek (1993) Prog. Theoret. Phys. 89 281 Occurrence Handle1993PThPh..89..281Z Occurrence Handle94b:81017

    ADS  MathSciNet  Google Scholar 

  9. V.M. Kendon K. Nemoto W.J. Munro (2002) J. Mod. Opt. 49 1709 Occurrence Handle2002JMOp...49.1709K Occurrence Handle2003i:81045

    ADS  MathSciNet  Google Scholar 

  10. V.M. Kendon K. Zyczkowski W.J. Munro (2002) Phys. Rev. A 66 62310 Occurrence Handle10.1103/PhysRevA.66.062310 Occurrence Handle2002PhRvA..66f2310K

    Article  ADS  Google Scholar 

  11. A.J. Scott (2004) Phys. Rev. A 69 052330 Occurrence Handle2004PhRvA..69e2330S

    ADS  Google Scholar 

  12. A.J. Scott C.M. Caves (2003) J. Phys. A 36 9553 Occurrence Handle10.1088/0305-4470/36/36/308 Occurrence Handle2003JPhA...36.9553S Occurrence Handle2004k:81102

    Article  ADS  MathSciNet  Google Scholar 

  13. D.N. Page (1993) Phys. Rev. Lett. 71 1291 Occurrence Handle1993PhRvL..71.1291P Occurrence Handle0972.81504 Occurrence Handle94f:81007

    ADS  MATH  MathSciNet  Google Scholar 

  14. S. Sen (1996) Phys. Rev. Lett. 77 1 Occurrence Handle1996PhRvL..77....1S

    ADS  Google Scholar 

  15. S. Foong S. Kanno (1994) Phys. Rev. Lett. 72 1148 Occurrence Handle10.1103/PhysRevLett.72.1148 Occurrence Handle1994PhRvL..72.1148F Occurrence Handle95b:81007

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Sanchez-Ruiz (1995) Phys. Rev. E 52 5653 Occurrence Handle1995PhRvE..52.5653S Occurrence Handle96f:46070

    ADS  MathSciNet  Google Scholar 

  17. A.R. Calderbank E.M. Rains P.W. Shor N.J.A. Sloane (1998) IEEE Trans. Inf. Theory 44 1369 Occurrence Handle99m:94063

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Blume-Kohout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blume-Kohout, R., Zurek, W.H. A Simple Example of “Quantum Darwinism”: Redundant Information Storage in Many-Spin Environments. Found Phys 35, 1857–1876 (2005). https://doi.org/10.1007/s10701-005-7352-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-7352-5

Keywords

Navigation