Skip to main content
Log in

Recent advances for quantum classifiers

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Machine learning has achieved dramatic success in a broad spectrum of applications. Its interplay with quantum physics may lead to unprecedented perspectives for both fundamental research and commercial applications, giving rise to an emergent research frontier of quantum machine learning. Along this line, quantum classifiers, which are quantum devices that aim to solve classification problems in machine learning, have attracted tremendous attention recently. In this review, we give a relatively comprehensive overview for the studies of quantum classifiers, with a focus on recent advances. First, we will review a number of quantum classification algorithms, including quantum support vector machines, quantum kernel methods, quantum decision tree classifiers, quantum nearest neighbor algorithms, and quantum annealing based classifiers. Then, we move on to introduce the variational quantum classifiers, which are essentially variational quantum circuits for classifications. We will review different architectures for constructing variational quantum classifiers and introduce the barren plateau problem, where the training of quantum classifiers might be hindered by the exponentially vanishing gradient. In addition, the vulnerability aspect of quantum classifiers in the setting of adversarial learning and the recent experimental progress on different quantum classifiers will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Das Sarma, D. L. Deng, and L. M. Duan, Phys. Today 72, 48 (2019), arXiv: 1903.03516.

    Article  Google Scholar 

  2. Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436 (2015).

    Article  ADS  Google Scholar 

  3. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, Cambridge, 2016).

    MATH  Google Scholar 

  4. M. I. Jordan, and T. M. Mitchell, Science 349, 255 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, Nature 529, 484 (2016).

    Article  ADS  Google Scholar 

  6. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis, Nature 550, 354 (2017).

    Article  ADS  Google Scholar 

  7. A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, Nature 542, 115 (2017).

    Article  ADS  Google Scholar 

  8. A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W. R. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver, K. Kavukcuoglu, and D. Hassabis, Nature 577, 706 (2020).

    Article  ADS  Google Scholar 

  9. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys. 91, 045002 (2019), arXiv: 1903.10563.

    Article  ADS  Google Scholar 

  10. V. Dunjko, and H. J. Briegel, Rep. Prog. Phys. 81, 074001 (2018).

    Article  ADS  Google Scholar 

  11. K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, Phys. Rev. X 7, 031038 (2017), arXiv: 1609.02552.

    Google Scholar 

  12. G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, Nat. Phys. 14, 447 (2018).

    Article  Google Scholar 

  13. L. Wang, Phys. Rev. B 94, 195105 (2016), arXiv: 1606.00318.

    Article  ADS  Google Scholar 

  14. F. S. Luiz, A. d. O. Junior, F. F. Fanchini, and G. T. Landi, arXiv: 2107.0455.

  15. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrá, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Nature 574, 505 (2019), arXiv: 1910.11333.

    Article  ADS  Google Scholar 

  16. H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Science 370, 1460 (2020), arXiv: 2012.01625.

    Article  ADS  Google Scholar 

  17. Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H.-L. Huang, Y.-H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, Q. Zhu, C.-Y. Lu, C.-Z. Peng, X. Zhu, and J.-W. Pan, arXiv: 2106.14734.

  18. Q. Zhu, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H.-L. Huang, Y.-H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, C.-Y. Lu, C.-Z. Peng, X. Zhu, and J.-W. Pan, arXiv: 2109.03494.

  19. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997), arXiv: quant-ph/9706033.

    Article  ADS  Google Scholar 

  20. P. W. Shor, SIAM J. Comput. 26, 1484 (1997).

    Article  MathSciNet  Google Scholar 

  21. A. M. Childs, and W. van Dam, Rev. Mod. Phys. 82, 1 (2010).

    Article  ADS  Google Scholar 

  22. G. L. Long, Phys. Rev. A 64, 022307 (2001), arXiv: quant-ph/0106071.

    Article  ADS  Google Scholar 

  23. A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009), arXiv: 0811.3171.

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631 (2014).

    Article  Google Scholar 

  25. P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503 (2014), arXiv: 1307.0471.

    Article  ADS  Google Scholar 

  26. V. Dunjko, J. M. Taylor, and H. J. Briegel, Phys. Rev. Lett. 117, 130501 (2016), arXiv: 1610.08251.

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Montanaro, npj Quant. Inf. 2, 15023 (2016), arXiv: 1511.04206.

    Article  ADS  Google Scholar 

  28. V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Nature 567, 209 (2019), arXiv: 1804.11326.

    Article  ADS  Google Scholar 

  29. M. Schuld, and N. Killoran, Phys. Rev. Lett. 122, 040504 (2019).

    Article  ADS  Google Scholar 

  30. X. Gao, Z. Y. Zhang, and L. M. Duan, Sci. Adv. 4, eaat9004 (2018).

    Article  ADS  Google Scholar 

  31. S. Lloyd, and C. Weedbrook, Phys. Rev. Lett. 121, 040502 (2018), arXiv: 1804.09139.

    Article  ADS  MathSciNet  Google Scholar 

  32. L. Hu, S. H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D. L. Deng, C. L. Zou, and L. Sun, Sci. Adv. 5, eaav2761 (2019), arXiv: 1808.02893.

    Article  ADS  Google Scholar 

  33. H. L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S. Li, F. Liang, J. Lin, Y. Xu, R. Yang, T. Liu, M. H. Hsieh, H. Deng, H. Rong, C. Z. Peng, C. Y. Lu, Y. A. Chen, D. Tao, X. Zhu, and J. W. Pan, Phys. Rev. Appl. 16, 024051 (2021), arXiv: 2010.06201.

    Article  ADS  Google Scholar 

  34. J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, arXiv: 2105.02859.

  35. K. Bartkiewicz, C. Gneiting, A. Černoch, K. Jiráková, K. Lemr, and F. Nori, Sci. Rep. 10, 12356 (2020), arXiv: 1906.04137.

    Article  ADS  Google Scholar 

  36. E. Peters, J. Caldeira, A. Ho, S. Leichenauer, M. Mohseni, H. Neven, P. Spentzouris, D. Strain, and G. N. Perdue, arXiv: 2101.09581.

  37. T. Haug, C. N. Self, and M. S. Kim, arXiv: 2108.01039.

  38. Z. Li, X. Liu, N. Xu, and J. Du, Phys. Rev. Lett. 114, 140504 (2015).

    Article  ADS  Google Scholar 

  39. M. Schuld, M. Fingerhuth, and F. Petruccione, Eurphys. Lett. 119, 60002 (2017), arXiv: 1703.10793.

    Article  ADS  Google Scholar 

  40. C. Blank, D. K. Park, J. K. K. Rhee, and F. Petruccione, npj Quant. Inf. 6, 41 (2020), arXiv: 1909.02611.

    Article  ADS  Google Scholar 

  41. D. Zhu, N. M. Linke, M. Benedetti, K. A. Landsman, N. H. Nguyen, C. H. Alderete, A. Perdomo-Ortiz, N. Korda, A. Garfoot, C. Brecque, L. Egan, O. Perdomo, and C. Monroe, Sci. Adv. 5, eaaw9918 (2019), arXiv: 1812.08862.

    Article  ADS  Google Scholar 

  42. J. Zhao, Y. H. Zhang, C. P. Shao, Y. C. Wu, G. C. Guo, and G. P. Guo, Phys. Rev. A 100, 012334 (2019), arXiv: 1904.12697.

    Article  ADS  Google Scholar 

  43. F. Tacchino, C. Macchiavello, D. Gerace, and D. Bajoni, npj Quant. Inf. 5, 26 (2019), arXiv: 1811.02266.

    Article  ADS  Google Scholar 

  44. M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, Phys. Rev. A 101, 032308 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, Phys. Rev. A 99, 032331 (2019), arXiv: 1811.11184.

    Article  ADS  Google Scholar 

  46. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Phys. Rev. A 98, 032309 (2018), arXiv: 1803.00745.

    Article  ADS  Google Scholar 

  47. S. Lu, L. M. Duan, and D. L. Deng, Phys. Rev. Res. 2, 033212 (2020), arXiv: 2001.00030.

    Article  Google Scholar 

  48. J. G. Liu, and L. Wang, Phys. Rev. A 98, 062324 (2018).

    Article  ADS  Google Scholar 

  49. J. Li, X. Yang, X. Peng, and C. P. Sun, Phys. Rev. Lett. 118, 150503 (2017), arXiv: 1608.00677.

    Article  ADS  Google Scholar 

  50. N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and S. Lloyd, Phys. Rev. Res. 1, 033063 (2019), arXiv: 1806.06871.

    Article  Google Scholar 

  51. E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Stojevic, A. G. Green, and S. Severini, npj Quant. Inf. 4, 65 (2018), arXiv: 1804.03680.

    Article  ADS  Google Scholar 

  52. E. Farhi, and H. Neven, arXiv: 1802.06002.

  53. I. Cong, S. Choi, and M. D. Lukin, Nat. Phys. 15, 1273 (2019).

    Article  Google Scholar 

  54. K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann, D. Scheiermann, and R. Wolf, Nat. Commun. 11, 808 (2020), arXiv: 1902.10445.

    Article  ADS  Google Scholar 

  55. S. Adhikary, S. Dangwal, and D. Bhowmik, Quant. Inf. Process. 19, 89 (2020), arXiv: 1908.08385.

    Article  ADS  Google Scholar 

  56. K. Wang, L. Xiao, W. Yi, S.-J. Ran, and P. Xue, arXiv: 2003.08551.

  57. S. Y.-C. Chen, C.-M. Huang, C.-W. Hsing, and Y.-J. Kao, arXiv: 2011.14651.

  58. D. Türkpençe, T. Akıncı, and S. Şeker, Phys. Lett. A 383, 1410 (2019), arXiv: 1810.02261.

    Article  ADS  Google Scholar 

  59. S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv: 1307.0411.

  60. N. Wiebe, A. Kapoor, and K. Svore, arXiv: 1401.2142.

  61. S. Lu, and S. L. Braunstein, Quant. Inf. Process. 13, 757 (2014).

    Article  ADS  Google Scholar 

  62. R. Heese, P. Bickert, and A. E. Niederle, arXiv: 2108.13207.

  63. A. Mari, T. R. Bromley, and N. Killoran, Phys. Rev. A 103, 012405 (2021), arXiv: 2008.06517.

    Article  ADS  Google Scholar 

  64. X. D. Cai, D. Wu, Z. E. Su, M. C. Chen, X. L. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 114, 110504 (2015), arXiv: 1409.7770.

    Article  ADS  Google Scholar 

  65. J. Stokes, J. Izaac, N. Killoran, and G. Carleo, Quantum 4, 269 (2020).

    Article  Google Scholar 

  66. B. Koczor, and S. C. Benjamin, arXiv: 1912.08660.

  67. D. C. Liu, and J. Nocedal, Math. Programming 45, 503 (1989).

    Article  MathSciNet  Google Scholar 

  68. W. Lavrijsen, A. Tudor, J. Müller, C. Iancu, and W. de Jong, in 2020 IEEE International Conference on Quantum Computing and Engineering (IEEE, Denver, 2020), pp. 267–277.

    Google Scholar 

  69. T. Haug, and M. S. Kim, arXiv: 2107.14063.

  70. D. Wierichs, J. Izaac, C. Wang, and C. Y.-Y. Lin, arXiv: 2107.12390.

  71. R. Sweke, F. Wilde, J. Meyer, M. Schuld, P. K. Faehrmann, B. Meynard-Piganeau, and J. Eisert, Quantum 4, 314 (2020).

    Article  Google Scholar 

  72. B. Koczor, and S. C. Benjamin, arXiv: 2008.13774.

  73. W. Li, S. Lu, and D.-L. Deng, Sci. China-Phys. Mech. Astron. 64, 100312 (2021).

    Article  Google Scholar 

  74. J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, and A. Aspuru-Guzik, Quant. Sci. Technol. 4, 014008 (2019).

    Article  ADS  Google Scholar 

  75. A. Blance, and M. Spannowsky, J. High Energ. Phys. 2, 212 (2021).

    Article  ADS  Google Scholar 

  76. I. Kerenidis, J. Landman, and A. Prakash, arXiv: 1911.01117.

  77. J. Liu, K. H. Lim, K. L. Wood, W. Huang, C. Guo, and H.-L. Huang, arXiv: 1911.02998.

  78. S. Wei, Y. Chen, Z. Zhou, and G. Long, arXiv: 2104.06918.

  79. H. Yano, Y. Suzuki, R. Raymond, and N. Yamamoto, in 2020 IEEE International Conference on Quantum Computing and Engineering (IEEE, Denver, 2020), pp. 11–21.

    Google Scholar 

  80. Y. C. Li, R. G. Zhou, R. Q. Xu, J. Luo, and W. W. Hu, Quant. Sci. Technol. 5, 044003 (2020).

    Article  ADS  Google Scholar 

  81. G. G. Guerreschi, and M. Smelyanskiy, arXiv: 1701.01450.

  82. O. Kyriienko, and V. E. Elfving, arXiv: 2108.01218.

  83. T. Hur, L. Kim, and D. K. Park, arXiv: 2108.00661.

  84. I. MacCormack, C. Delaney, A. Galda, N. Aggarwal, and P. Narang, arXiv: 2012.14439.

  85. R. LaRose, and B. Coyle, Phys. Rev. A 102, 032420 (2020), arXiv: 2003.01695.

    Article  ADS  Google Scholar 

  86. S. Johri, S. Debnath, A. Mocherla, A. Singk, A. Prakash, J. Kim, and I. Kerenidis, npj Quant. Inf. 7, 122 (2021), arXiv: 2012.04145.

    Article  ADS  Google Scholar 

  87. W. Jiang, Z. Lu, and D.-L. Deng, arXiv: 2108.02786.

  88. H. Neven, V. S. Denchev, G. Rose, and W. G. Macready, arXiv: 0811.0416.

  89. H. Neven, V. S. Denchev, G. Rose, and W. G. Macready, arXiv: 0912.0779.

  90. H. Neven, V. S. Denchev, M. Drew-Brook, J. Zhang, W. G. Macready, and G. Rose, in Demonstrations at NIPS-09, 24th Annual Conference on Neural Information Processing Systems (Vancouver, 2009), pp. 1–17.

  91. R. Carapito, R. Li, J. Helms, C. Carapito, S. Gujja, V. Rolli, R. Guimaraes, J. Malagon-Lopez, P. Spinnhirny, R. Mohseninia, A. Hirschler, L. Muller, P. Bastard, A. Gervais, Q. Zhang, F. Danion, Y. Ruch, M. Schenck-Dhif, O. Collange, T.-N. Chamaraux-Tran, A. Molitor, A. Pichot, A. Bernard, O. Tahar, S. Bibi-Triki, H. Wu, N. Paul, S. Mayeur, A. Larnicol, G. Laumond, J. Frappier, S. Schmidt, A. Hanauer, C. Macquin, T. Stemmelen, M. Simons, X. Mariette, O. Hermine, S. Fafi-Kremer, B. Goichot, B. Drenou, K. Kuteifan, J. Pottecher, P.-M. Mertes, S. Kailasan, M. J. Aman, E. Pin, P. Nilsson, A. Thomas, A. Viari, D. Sanlaville, F. Schneider, J. Sibilia, P.-L. Tharaux, J.-L. Casanova, Y. Hansmann, D. Lidar, M. Radosavljevic, J. R. Gulcher, F. Meziani, C. Moog, T. W. Chittenden, and S. Bahram, https://doi.org/10.1101/2021.06.21.21257822.

  92. R. Y. Li, R. Di Felice, R. Rohs, and D. A. Lidar, npj Quant. Inf. 4, 14 (2018), arXiv: 1803.00135.

    Article  ADS  Google Scholar 

  93. R. Y. Li, S. Gujja, S. R. Bajaj, O. E. Gamel, N. Cilfone, J. R. Gulcher, D. A. Lidar, and T. W. Chittenden, Patterns 2, 100246 (2021).

    Article  Google Scholar 

  94. A. Mott, J. Job, J. R. Vlimant, D. Lidar, and M. Spiropulu, Nature 550, 375 (2017).

    Article  ADS  Google Scholar 

  95. K. L. Pudenz, and D. A. Lidar, Quant. Inf. Process. 12, 2027 (2013), arXiv: 1109.0325.

    Article  ADS  Google Scholar 

  96. A. Zlokapa, A. Mott, J. Job, J. R. Vlimant, D. Lidar, and M. Spiropulu, Phys. Rev. A 102, 062405 (2020), arXiv: 1908.04480.

    Article  ADS  MathSciNet  Google Scholar 

  97. R. K. Nath, H. Thapliyal, and T. S. Humble, arXiv: 2106.02964.

  98. E. Boyda, S. Basu, S. Ganguly, A. Michaelis, S. Mukhopadhyay, and R. R. Nemani, PLoS ONE 12, e0172505 (2017).

    Article  Google Scholar 

  99. J. Caldeira, J. Job, S. H. Adachi, B. Nord, and G. N. Perdue, arXiv: 1911.06259.

  100. V. S. Denchev, N. Ding, S. V. N. Vishwanathan, and H. Neven, arXiv: 1205.1148.

  101. V. Dixit, R. Selvarajan, M. A. Alam, T. S. Humble, and S. Kais, Front. Phys. 9, 589626 (2021), arXiv: 2005.03247.

    Article  Google Scholar 

  102. J. Dulny III, and M. Kim, arXiv: 1603.07980.

  103. J. Liu, F. Spedalieri, K. T. Yao, T. Potok, C. Schuman, S. Young, R. Patton, G. Rose, and G. Chamka, Entropy 20, 380 (2018).

    Article  ADS  Google Scholar 

  104. N. T. Nguyen, and G. T. Kenyon, in 2018 IEEE International Conference on Rebooting Computing (ICRC) (IEEE, McLean, 2018), pp. 1–7.

    Google Scholar 

  105. D. Willsch, M. Willsch, H. De Raedt, and K. Michielsen, Comput. Phys. Commun. 248, 107006 (2020), arXiv: 1906.06283.

    Article  MathSciNet  Google Scholar 

  106. J. Herrmann, S. M. Llima, A. Remm, P. Zapletal, N. A. McMahon, C. Scarato, F. Swiadek, C. K. Andersen, C. Hellings, S. Krinner, N. Lacroix, S. Lazar, M. Kerschbaum, D. C. Zanuz, G. J. Norris, M. J. Hartmann, A. Wallraff, and C. Eichler, arXiv: 2109.05909.

  107. K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik, arXiv: 2101.08448.

  108. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, arXiv: 2012.09265.

  109. J. Preskill, Quantum 2, 79 (2018).

    Article  Google Scholar 

  110. Y. Liu, S. Arunachalam, and K. Temme, Nat. Phys. 17, 1013 (2021), arXiv: 2010.02174.

    Article  Google Scholar 

  111. G. Bebis, and M. Georgiopoulos, IEEE Potent. 13, 27 (1994).

    Article  Google Scholar 

  112. D. Svozil, V. Kvasnicka, and J. Pospichal, Chemomet. Intel. Lab. Syst. 39, 43 (1997).

    Article  Google Scholar 

  113. S. Lawrence, C. L. Giles, C. L. Ah Chung Tsoi, and A. D. Back, IEEE Trans. Neural Netw. 8, 98 (1997).

    Article  Google Scholar 

  114. T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Prague, 2011), pp. 5528–5531.

    Book  Google Scholar 

  115. W. Zaremba, I. Sutskever, and O. Vinyals, arXiv: 1409.2329.

  116. G. E. Hinton, A. Krizhevsky, and S. D. Wang, in Artificial Neural Networks and Machine Learning ICANN 2011, edited by T. Honkela, W. Duch, M. Girolami, and S. Kaski, Lecture Notes in Computer Science (Springer, Heidelberg, 2011), pp. 44–51.

  117. G. E. Hinton, S. Sabour, and N. Frosst, in International Conference on Learning Representations (Vancouver, 2018).

  118. S. Sabour, N. Frosst, and G. E. Hinton, arXiv: 1710.09829.

  119. E. Xi, S. Bing, and Y. Jin, arXiv: 1712.03480.

  120. X. Zhang, and L. Chen, in International Conference on Learning Representations (Vancouver, 2018).

  121. A. G. Rattew, S. Hu, M. Pistoia, R. Chen, and S. Wood, arXiv: 1910.09694.

  122. R. Li, U. Alvarez-Rodriguez, L. Lamata, and E. Solano, Quant. Measure. Quant. Metrol. 4, 1 (2017), arXiv: 1611.07851.

    Article  ADS  Google Scholar 

  123. S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao, arXiv: 2010.08561.

  124. L. Cincio, Y. Subaşı, A. T. Sornborger, and P. J. Coles, New J. Phys. 20, 113022 (2018), arXiv: 1803.04114.

    Article  ADS  Google Scholar 

  125. L. Cincio, K. Rudinger, M. Sarovar, and P. J. Coles, PRX Quant. 2, 010324 (2021).

    Article  Google Scholar 

  126. Z. Lu, P.-X. Shen, and D.-L. Deng, arXiv: 2012.15131.

  127. D. Chivilikhin, A. Samarin, V. Ulyantsev, I. Iorsh, A. Oganov, and O. Kyriienko, arXiv: 2007.04424.

  128. M. Pirhooshyaran, and T. Terlaky, arXiv: 2012.04046.

  129. M. Ostaszewski, E. Grant, and M. Benedetti, Quantum 5, 391 (2021).

    Article  Google Scholar 

  130. L. Li, M. Fan, M. Coram, P. Riley, and S. Leichenauer, Phys. Rev. Res. 2, 023074 (2020), arXiv: 1909.07621.

    Article  Google Scholar 

  131. T. Fösel, P. Tighineanu, T. Weiss, and F. Marquardt, Phys. Rev. X 8, 031084 (2018), arXiv: 1802.05267.

    Google Scholar 

  132. A. Bolens, and M. Heyl, arXiv: 2006.16269.

  133. H. Wang, Y. Ding, J. Gu, Y. Lin, D. Z. Pan, and F. T. Chong, arXiv: 2107.10845.

  134. M. Bilkis, M. Cerezo, G. Verdon, P. J. Coles, and L. Cincio, arXiv: 2103.06712.

  135. Y. Du, T. Huang, S. You, M.-H. Hsieh, and D. Tao, arXiv: 2010.10217.

  136. H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, Nat. Commun. 10, 3007 (2019), arXiv: 1812.11173.

    Article  ADS  Google Scholar 

  137. H. L. Tang, V. O. Shkolnikov, G. S. Barron, H. R. Grimsley, N. J. Mayhall, E. Barnes, and S. E. Economou, PRX Quant. 2, 020310 (2021), arXiv: 1911.10205.

    Article  ADS  Google Scholar 

  138. S. Shalev-Shwartz, O. Shamir, and S. Shammah, arXiv: 1703.07950.

  139. J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, Nat. Commun. 9, 4812 (2018), arXiv: 1803.11173.

    Article  ADS  Google Scholar 

  140. M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Nat. Commun. 12, 1791 (2021), arXiv: 2001.00550.

    Article  ADS  Google Scholar 

  141. A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sornborger, and P. J. Coles, arXiv: 2011.02966.

  142. S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles, arXiv: 2007.14384.

  143. P. Huembeli, and A. Dauphin, Quant. Sci. Technol. 6, 025011 (2021), arXiv: 2008.02785.

    Article  ADS  Google Scholar 

  144. T. L. Patti, K. Najafi, X. Gao, and S. F. Yelin, Phys. Rev. Res. 3, 033090 (2021), arXiv: 2012.12658.

    Article  Google Scholar 

  145. C. O. Marrero, M. Kieferova, and N. Wiebe, arXiv: 2010.15968.

  146. A. V. Uvarov, and J. D. Biamonte, J. Phys. A-Math. Theor. 54, 245301 (2021), arXiv: 2011.10530.

    Article  ADS  Google Scholar 

  147. A. Arrasmith, M. Cerezo, P. Czarnik, L. Cincio, and P. J. Coles, arXiv: 2011.12245.

  148. D. Wierichs, C. Gogolin, and M. Kastoryano, Phys. Rev. Res. 2, 043246 (2020), arXiv: 2004.14666.

    Article  Google Scholar 

  149. M. Cerezo, and P. J. Coles, Quant. Sci. Technol. 6, 035006 (2021), arXiv: 2008.07454.

    Article  ADS  Google Scholar 

  150. E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti, Quantum 3, 214 (2019).

    Article  Google Scholar 

  151. T. Haug, and M. S. Kim, arXiv: 2104.14543.

  152. Z. Holmes, A. Arrasmith, B. Yan, P. J. Coles, A. Albrecht, and A. T. Sornborger, Phys. Rev. Lett. 126, 190501 (2021), arXiv: 2009.14808.

    Article  ADS  Google Scholar 

  153. Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, arXiv: 2101.02138.

  154. C. Zhao, and X. S. Gao, Quantum 5, 466 (2021).

    Article  Google Scholar 

  155. M. Kieferova, O. M. Carlos, and N. Wiebe, arXiv: 2106.09567.

  156. Z. Liu, L.-W. Yu, L.-M. Duan, and D.-L. Deng, arXiv: 2108.08312.

  157. A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt, and M. Leib, arXiv: 2006.14904.

  158. N. Liu, and P. Wittek, Phys. Rev. A 101, 062331 (2020), arXiv: 1905.04286.

    Article  ADS  MathSciNet  Google Scholar 

  159. H. Liao, I. Convy, W. J. Huggins, and K. B. Whaley, Phys. Rev. A 103, 042427 (2021).

    Article  ADS  Google Scholar 

  160. M. Weber, N. Liu, B. Li, C. Zhang, and Z. Zhao, npj Quant. Inf. 7, 76 (2021).

    Article  ADS  Google Scholar 

  161. Y. Du, M. H. Hsieh, T. Liu, D. Tao, and N. Liu, Phys. Rev. Res. 3, 023153 (2021), arXiv: 2003.09416.

    Article  Google Scholar 

  162. W. Gong, and D.-L. Deng, arXiv: 2102.07788.

  163. M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose, Nature 473, 194 (2011).

    Article  ADS  Google Scholar 

  164. N. Jones, Nature (2013), https://doi.org/10.1038/nature.2013.12999.

  165. T. Lanting, A. J. Przybysz, A. Y. Smirnov, F. M. Spedalieri, M. H. Amin, A. J. Berkley, R. Harris, F. Altomare, S. Boixo, P. Bunyk, N. Dickson, C. Enderud, J. P. Hilton, E. Hoskinson, M. W. Johnson, E. Ladizinsky, N. Ladizinsky, R. Neufeld, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, S. Uchaikin, A. B. Wilson, and G. Rose, Phys. Rev. X 4, 021041 (2014), arXiv: 1401.3500.

    Google Scholar 

  166. S. E. Venegas-Andraca, W. Cruz-Santos, C. McGeoch, and M. Lanzagorta, Contemp. Phys. 59, 174 (2018), arXiv: 1803.03372.

    Article  ADS  Google Scholar 

  167. C. Cortes, and V. Vapnik, Mach. Learn. 20, 273 (1995).

    Google Scholar 

  168. W. S. Noble, Nat. Biotechnol. 24, 1565 (2006).

    Article  Google Scholar 

  169. S. Suthaharan, in Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning, edited by S. Suthaharan, Integrated Series in Information Systems (Springer, Boston, 2016), pp. 207–235.

  170. B. E. Boser, I. M. Guyon, and V. N. Vapnik, in Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT’92 (ACM, New York, 1992), pp. 144–152.

    Book  Google Scholar 

  171. J. A. K. Suykens, and J. Vandewalle, Neural Proc. Lett. 9, 293 (1999).

    Article  Google Scholar 

  172. H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev. Lett. 87, 167902 (2001), arXiv: quant-ph/0102001.

    Article  ADS  Google Scholar 

  173. S. Aaronson, Nat. Phys. 11, 291 (2015).

    Article  Google Scholar 

  174. V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100, 160501 (2008), arXiv: 0708.1879.

    Article  ADS  MathSciNet  Google Scholar 

  175. J. R. Quinlan, Mach. Learn. 1, 81 (1986).

    Google Scholar 

  176. J. Quinlan, C4. 5: Programs for Machine Learning (Elsevier, Amsterdam, 2014).

    Google Scholar 

  177. L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees (CRC Press, Boca Raton, 1984).

    MATH  Google Scholar 

  178. D. R. Carvalho, and A. A. Freitas, Inf. Sci. 163, 13 (2004).

    Article  Google Scholar 

  179. R. Kohavi, and J. R. Quinlan, in Handbook of Data Mining and Knowledge Discovery (Oxford University Press, Inc., Oxford, 2002), pp. 267–276.

    Google Scholar 

  180. Y.-Y. Song, and L. Ying, Shanghai Arch Psychiatry 27, 130 (2015).

    Google Scholar 

  181. L. Hyafil, and R. L. Rivest, Inf. Proc. Lett. 5, 15 (1976).

    Article  Google Scholar 

  182. E. Farhi, and S. Gutmann, Phys. Rev. A 58, 915 (1998), arXiv: quant-ph/9706062.

    Article  ADS  MathSciNet  Google Scholar 

  183. Y. Shi, Inf. Proc. Lett. 81, 23 (2002).

    Article  ADS  Google Scholar 

  184. T. Cover, and P. Hart, IEEE Trans. Inform. Theor. 13, 21 (1967).

    Article  Google Scholar 

  185. J. L. Bentley, Commun. ACM 18, 509 (1975).

    Article  Google Scholar 

  186. G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Contemp. Math. 305, 53 (2002).

    Article  Google Scholar 

  187. C. Durr, and P. Hoyer, arXiv: quant-ph/9607014.

  188. B. Apolloni, C. Carvalho, and D. de Falco, Stochast. Proc. Their Appl. 33, 233 (1989).

    Article  Google Scholar 

  189. B. Apolloni, N. Cesa-Bianchi, and D. de Falco, in Stochastic Processes, Physics and Geometry (World Scientific Publishing, Singapore, 1990), pp. 97–111.

    Google Scholar 

  190. A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll, Chem. Phys. Lett. 219, 343 (1994).

    Article  ADS  Google Scholar 

  191. T. Kadowaki, and H. Nishimori, Phys. Rev. E 58, 5355 (1998), arXiv: cond-mat/9804280.

    Article  ADS  Google Scholar 

  192. J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Science 284, 779 (1999).

    Article  ADS  Google Scholar 

  193. E. Crosson, E. Farhi, C. Y.-Y. Lin, H.-H. Lin, and P. Shor, arXiv: 1401.7320.

  194. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science 292, 472 (2001), arXiv: quant-ph/0104129.

    Article  ADS  MathSciNet  Google Scholar 

  195. S. Muthukrishnan, T. Albash, and D. A. Lidar, arXiv: 1505.01249.

  196. M. Born, and V. Fock, Z. Physik 51, 165 (1928).

    Article  ADS  Google Scholar 

  197. A. Das, B. K. Chakrabarti, and R. B. Stinchcombe, Phys. Rev. E 72, 026701 (2005), arXiv: cond-mat/0502167.

    Article  ADS  Google Scholar 

  198. R. E. Schapire, in Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, edited by B. Schölkopf, Z. Luo, and V. Vovk, (Springer, Berlin, Heidelberg, 2013), pp. 37–52.

  199. W. Samek, T. Wiegand, and K.-R. Müller, arXiv: 1708.08296.

  200. L. Zdeborová, Nat. Phys. 16, 602 (2020).

    Article  Google Scholar 

  201. W. S. McCulloch, and W. Pitts, Bull. Math. Biophys. 5, 115 (1943).

    Article  MathSciNet  Google Scholar 

  202. F. Rosenblatt, The Perceptron, a Perceiving and Recognizing Automaton Project Para (Cornell Aeronautical Laboratory, Cornell, 1957).

    Google Scholar 

  203. F. Rosenblatt, Psychol. Rev. 65, 386 (1958).

    Article  Google Scholar 

  204. A. Krizhevsky, I. Sutskever, and G. E. Hinton, Commun. ACM 60, 84 (2017).

    Article  Google Scholar 

  205. D. P. Kingma, and J. Ba, arXiv: 1412.6980.

  206. A. M. Childs, and N. Wiebe, arXiv: 1202.5822.

  207. Y. Y. Shi, L. M. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006), arXiv: quant-ph/0511070.

    Article  ADS  Google Scholar 

  208. G. Vidal, Phys. Rev. Lett. 101, 110501 (2008), arXiv: quant-ph/0610099.

    Article  ADS  Google Scholar 

  209. L. Cincio, J. Dziarmaga, and M. M. Rams, Phys. Rev. Lett. 100, 240603 (2008), arXiv: 0710.3829.

    Article  ADS  Google Scholar 

  210. A. Broadbent, J. Fitzsimons, and E. Kashefi, in 2009 50th Annual IEEE Symposium on Foundations of Computer Science (IEEE, Atlanta, 2009), pp. 517–526.

    Book  Google Scholar 

  211. J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, J. Math. Phys. 45, 2171 (2004), arXiv: quant-ph/0310075.

    Article  ADS  MathSciNet  Google Scholar 

  212. C. Dankert, R. Cleve, J. Emerson, and E. Livine, Phys. Rev. A 80, 012304 (2009), arXiv: quant-ph/0606161.

    Article  ADS  Google Scholar 

  213. A. W. Harrow, and R. A. Low, Commun. Math. Phys. 291, 257 (2009), arXiv: 0802.1919.

    Article  ADS  Google Scholar 

  214. S. Popescu, A. J. Short, and A. Winter, Nat. Phys. 2, 754 (2006), arXiv: quant-ph/0511225.

    Article  Google Scholar 

  215. M. J. Bremner, C. Mora, and A. Winter, Phys. Rev. Lett. 102, 190502 (2009), arXiv: 0812.3001.

    Article  ADS  MathSciNet  Google Scholar 

  216. D. Gross, S. T. Flammia, and J. Eisert, Phys. Rev. Lett. 102, 190501 (2009), arXiv: 0810.4331.

    Article  ADS  MathSciNet  Google Scholar 

  217. G. Verdon, M. Broughton, J. R. McClean, K. J. Sung, R. Babbush, Z. Jiang, H. Neven, and M. Mohseni, arXiv: 1907.05415.

  218. G. E. Hinton, S. Osindero, and Y. W. Teh, Neural. Comput. 18, 1527 (2006).

    Article  MathSciNet  Google Scholar 

  219. Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, in Advances in Neural Information Processing Systems (MIT Press, Cambridge, 2007).

    Google Scholar 

  220. N. Carlini, and D. Wagner, in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AISec’17, 3–14, (Association for Computing Machinery, New York, 2017).

    Book  Google Scholar 

  221. A. Kurakin, I. Goodfellow, and S. Bengio, arXiv: 1607.02533.

  222. D. J. Miller, Z. Xiang, and G. Kesidis, arXiv: 1904.06292.

  223. L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar, in Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, AISec’11, 43–58, (Association for Computing Machinery, New York, 2011).

    Book  Google Scholar 

  224. Y. Vorobeychik, and M. Kantarcioglu, Syn. Lect. Artific. Intel. Mach. Learn. 12, 1 (2018).

    Google Scholar 

  225. A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, arXiv: 1804.08598.

  226. V. Tjeng, K. Xiao, and R. Tedrake, arXiv: 1711.07356.

  227. I. J. Goodfellow, J. Shlens, and C. Szegedy, arXiv: 1412.6572.

  228. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-fellow, and R. Fergus, arXiv: 1312.6199.

  229. A. Athalye, N. Carlini, and D. Wagner, arXiv: 1802.00420.

  230. N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, in Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, ASIA CCS’17 (Association for Computing Machinery, New York, 2017), pp. 506–519.

    Book  Google Scholar 

  231. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, arXiv: 1706.06083.

  232. B. Biggio, and F. Roli, Pattern Recogn. 84, 317 (2018), arXiv: 1712.03141.

    Article  ADS  Google Scholar 

  233. P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AISec’17 (Association for Computing Machinery, New York, 2017), pp. 15–26.

    Book  Google Scholar 

  234. K. Poland, K. Beer, and T. J. Osborne, arXiv: 2003.14103.

  235. K. Sharma, M. Cerezo, Z. Holmes, L. Cincio, A. Sornborger, and P. J. Coles, arXiv: 2007.04900.

  236. R. A. Fisher, Ann. Eugenics 7, 179 (1936).

    Article  Google Scholar 

  237. A. Elben, B. Vermersch, C. F. Roos, and P. Zoller, Phys. Rev. A 99, 052323 (2019), arXiv: 1812.02624.

    Article  ADS  MathSciNet  Google Scholar 

  238. A. Elben, B. Vermersch, R. van Bijnen, C. Kokail, T. Brydges, C. Maier, M. K. Joshi, R. Blatt, C. F. Roos, and P. Zoller, Phys. Rev. Lett. 124, 010504 (2020), arXiv: 1909.01282.

    Article  ADS  Google Scholar 

  239. D. Zhu, Z.-P. Cian, C. Noel, A. Risinger, D. Biswas, L. Egan, Y. Zhu, A. M. Green, C. H. Alderete, N. H. Nguyen, Q. Wang, A. Maksymov, Y. Nam, M. Cetina, N. M. Linke, M. Hafezi, and C. Monroe, arXiv: 2107.11387.

  240. T. Haug, K. Bharti, and M. S. Kim, arXiv: 2102.01659.

  241. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).

    Article  ADS  Google Scholar 

  242. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, Rev. Mod. Phys. 84, 777 (2012), arXiv: 0805.2853.

    Article  ADS  Google Scholar 

  243. X. Q. Zhou, P. Kalasuwan, T. C. Ralph, and J. L. O’Brien, Nat. Photon. 7, 223 (2013), arXiv: 1110.4276.

    Article  ADS  Google Scholar 

  244. J. C. Spall, Automatica 33, 109 (1997).

    Article  Google Scholar 

  245. J. C. Spall, IEEE Trans. Automat. Contr. 45, 1839 (2000).

    Article  Google Scholar 

  246. A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner, Nat. Comput. Sci. 1, 403 (2021).

    Article  Google Scholar 

  247. J. J. Meyer, arXiv: 2103.15191.

  248. X. Wang, Y. Du, Y. Luo, and D. Tao, arXiv: 2103.16774.

  249. M. Schuld, R. Sweke, and J. J. Meyer, Phys. Rev. A 103, 032430 (2021), arXiv: 2008.08605.

    Article  ADS  Google Scholar 

  250. M. C. Caro, E. Gil-Fuster, J. J. Meyer, J. Eisert, and R. Sweke, arXiv: 2106.03880.

  251. Y. Wu, J. Yao, P. Zhang, and H. Zhai, Phys. Rev. Res. 3, L032049 (2021), arXiv: 2101.04273.

    Article  Google Scholar 

  252. L. Funcke, T. Hartung, K. Jansen, S. Kühn, and P. Stornati, Quantum 5, 422 (2021).

    Article  Google Scholar 

  253. L. Banchi, J. Pereira, and S. Pirandola, arXiv: 2102.08991.

  254. Y. Du, Z. Tu, X. Yuan, and D. Tao, arXiv: 2104.09961.

  255. Y. Du, M.-H. Hsieh, T. Liu, S. You, and D. Tao, arXiv: 2007.12369.

  256. X. Z. Luo, J. G. Liu, P. Zhang, and L. Wang, Quantum 4, 341 (2020).

    Article  Google Scholar 

  257. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, SIAM Rev. 59, 65 (2017).

    Article  MathSciNet  Google Scholar 

  258. M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S. V. Isakov, P. Massey, M. Y. Niu, R. Halavati, E. Peters, M. Leib, A. Skolik, M. Streif, D. Von Dollen, J. R. McClean, S. Boixo, D. Bacon, A. K. Ho, H. Neven, and M. Mohseni, arXiv: 2003.02989.

  259. V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed, J. M. Arrazola, C. Blank, A. Delgado, S. Jahangiri, K. McKiernan, J. J. Meyer, Z. Niu, A. Száva, and N. Killoran, arXiv: 1811.04968.

  260. N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and C. Weedbrook, Quantum 3, 129 (2019).

    Article  Google Scholar 

  261. G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen, J. M. Chow, A. D. Cörcoles-Gonzales, A. J. Cross, A. Cross, J. Cruz-Benito, C. Culver, S. D. L. P. González, E. D. L. Torre, D. Ding, E. Dumitrescu, I. Duran, P. Eendebak, M. Everitt, I. F. Sertage, A. Frisch, A. Fuhrer, J. Gambetta, B. G. Gago, J. Gomez-Mosquera, D. Greenberg, I. Hamamura, V. Havlicek, J. Hellmers, Ł. Herok, H. Horii, S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa, A. Karazeev, K. Krsulich, P. Liu, Y. Luh, Y. Maeng, M. Marques, F. J. Martín-Fernández, D. T. Mc-Clure, D. McKay, S. Meesala, A. Mezzacapo, N. Moll, D. M. Rodríguez, G. Nannicini, P. Nation, P. Ollitrault, L. J. O’Riordan, H. Paik, J. Péirez, A. Phan, M. Pistoia, V. Prutyanov, M. Reuter, J. Rice, A. R. Davila, R. H. P. Rudy, M. Ryu, N. Sathaye, C. Schnabel, E. Schoute, K. Setia, Y. Shi, A. Silva, Y. Siraichi, S. Sivarajah, J. A. Smolin, M. Soeken, H. Takahashi, I. Tavernelli, C. Taylor, P. Taylour, K. Trabing, M. Treinish, W. Turner, D. Vogt-Lee, C. Vuillot, J. A. Wildstrom, J. Wilson, E. Winston, C. Wood, S. Wood, S. Wörner, I. Y. Akhalwaya, and C. Zoufal, Zenodo (2019), https://doi.org/10.5281/zenodo.2562111.

  262. K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler, in Proceedings of the Real World Domain Specific Languages Workshop 2018, RWDSL2018 (Association for Computing Machinery, New York, 2018), pp. 1–10.

    Book  Google Scholar 

  263. F. Zhang, C. Huang, M. Newman, J. Cai, H. Yu, Z. Tian, B. Yuan, H. Xu, J. Wu, X. Gao, J. Chen, M. Szegedy, and Y. Shi, arXiv: 1907.11217.

  264. C. Huang, M. Szegedy, F. Zhang, X. Gao, J. Chen, and Y. Shi, arXiv: 1909.02559.

  265. D. Nguyen, D. Mikushin, and Y. Man-Hong, in 2021 Design, Automation Test in Europe Conference Exhibition (DATE) (Grenoble, 2021), pp. 1056–1061.

  266. A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron, in Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI’13 (Association for Computing Machinery, New York, 2013), pp. 333–342.

    Book  Google Scholar 

  267. A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi, Parallel Comput. 45, 2 (2015).

    Article  Google Scholar 

  268. N. Khammassi, I. Ashraf, X. Fu, C. Almudever, and K. Bertels, in Design, Automation Test in Europe Conference Exhibition (Lausanne, 2017), pp. 464–469.

  269. J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys. Commun. 183, 1760 (2012), arXiv: 1110.0573.

    Article  ADS  Google Scholar 

  270. L. Bittel, and M. Kliesch, arXiv: 2101.07267.

  271. H. Y. Huang, R. Kueng, and J. Preskill, Phys. Rev. Lett. 126, 190505 (2021), arXiv: 2101.02464.

    Article  ADS  Google Scholar 

  272. K. Bu, D. E. Koh, L. Li, Q. Luo, and Y. Zhang, arXiv: 2101.06154.

  273. H. Cai, Q. Ye, and D.-L. Deng, arXiv: 2107.09078.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ling Deng.

Additional information

This work was supported by the Start-up Fund from Tsinghua University (Grant No. 53330300320), the National Natural Science Foundation of China (Grant No. 12075128), and the Shanghai Qi Zhi Institute. We would like to thank Zhide Lu, Wenjie Jiang, Daniel Lidar, Tobias Haug, Yuxuan Du, Peixin Shen, Sirui Lu, and Liwei Yu for helpful discussions and communications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Deng, DL. Recent advances for quantum classifiers. Sci. China Phys. Mech. Astron. 65, 220301 (2022). https://doi.org/10.1007/s11433-021-1793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1793-6

Keywords

Navigation