Skip to main content
Log in

Symmetric bidirectional quantum teleportation using a six-qubit cluster state as a quantum channel

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Bidirectional quantum teleportation is a fundamental protocol for exchanging quantum information between two quantum nodes. Till now, all bidirectional quantum teleportation protocols have achieved a maximum efficiency of \(40\%\). Here, we propose a new scheme for a symmetric bidirectional quantum teleportation using a six-qubit cluster state as the quantum channel, for symmetric (\(3\leftrightarrow 3\)) qubit bidirectional quantum teleportation of a special three-qubit entangled state. The novelty of our scheme lies in its generalisation for (\(N\leftrightarrow N\)) qubit bidirectional quantum teleportation employing a 2N-qubit cluster state. The efficiency of the proposed protocol is remarkably increased to \(50\%\) which is the highest till now. Interestingly, only GHZ-state measurements and four Toffoli-gate operations are necessary which is independent of the number (N) of qubits to be teleported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R Horodecki, P Horodecki, M Horodecki and K Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  2. C H Bennett, G Brassard, C Crepeau, R Jozsa, A Peres and W K Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Liu, X Shu, G L Long, D M Tong and F Li, Phys. Rev. A 65, 022304 (2002)

  4. R F Werner, J. Phys. A: Math. Gen. 34, 7081 (2001)

    Article  ADS  Google Scholar 

  5. T Sasaki, Y Yamamoto and M Koashi, Nature 509, 475 (2014)

    Article  ADS  Google Scholar 

  6. V Scarani, H Bechmann-Pasquinucci, N J Cerf, M Dušek, N Lütkenhaus and M Peev, Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  7. R Renner, Int. J. Quant. Inf. 6, 1 (2008)

    Article  Google Scholar 

  8. A M Lance, T Symul, W P Bowen, B C Sanders and P K Lam, Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  9. F Yan and X Zhang, Eur. Phys. J. B 41, 75 (2004)

    Article  ADS  Google Scholar 

  10. D Llewellyn, Y Ding, I I Faruque, S Paesani, D Bacco, R Santagati and M G Thompson, Nat. Phys. 16, 148 (2020)

    Article  Google Scholar 

  11. Q C Sun, Y L Mao, S J Chen, W Zhang, Y F Jiang, Y B Zhang and J W Pan, Nat. Photon. 10, 671 (2016)

    Article  ADS  Google Scholar 

  12. J L O’brien, Science 318, 1567 (2007)

  13. Y F Huang, X F Ren, Y S Zhang, L M Duan and G C Guo, Phys. Rev. Lett. 93, 240501 (2004)

    Article  ADS  Google Scholar 

  14. Y Wan, D Kienzler, S D Erickson, K H Mayer, T R Tan, J J Wu and D Leibfried, Science 364, 875 (2019)

    Article  ADS  Google Scholar 

  15. Z X Man, Y J Xia and N B An, Eur. Phys. J. D 42, 333 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. D Bouwmeester, J W Pan, K Mattle, M Eibl, H Weinfurter and A Zeilinger, Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  17. X S Ma, Nature 489, 269 (2012)

    Article  ADS  Google Scholar 

  18. X M Jin, Nat. Photon. 4, 376 (2010)

    Article  ADS  Google Scholar 

  19. Q Zhang, Nat. Phys. 2, 678 (2006)

    Article  Google Scholar 

  20. S Pirandola, J Eisert, C Weedbrook, A Furusawa and S L Braunstein, Nat. Photon. 9, 641 (2015)

    Article  ADS  Google Scholar 

  21. J G Ren, Nature 549, 70 (2017)

    Article  ADS  Google Scholar 

  22. K Yang, L Huang, W Yang and F Song, Int. J. Theor. Phys. 48, 516 (2009)

    Article  Google Scholar 

  23. G Rigolin, Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  24. D F Li, R J Wang and E Baagyere, Quant. Inf. Proc. 18, 1 (2019)

    Article  Google Scholar 

  25. P Agrawal and A K Pati, Phys. Lett. A 305, 12 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. D Saha and P K Panigrahi, Quant. Inf. Proc. 11, 615 (2012)

    Article  Google Scholar 

  27. P Agrawal and A Pati, Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  28. X W Zha, Z-C Zou, J X Qi and H Y Song, Int. J. Theor. Phys. 52, 1740 (2013)

    Article  Google Scholar 

  29. C Wang, F G Deng and G L Long, Opt. Commun. 15, 253 (2005)

    Google Scholar 

  30. M Hillery, V Bužek and A Berthiaume, Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  31. D Gottesman, Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. N Srinatha, S Omkar, R Srikanth, S Banerjee and A Pathak, Quant. Inf. Proc. 13, 59 (2014)

    Article  Google Scholar 

  33. C Shukla, A Banerjee and A Pathak, Int. J. Theor. Phys. 52, 3790 (2013)

    Article  Google Scholar 

  34. Y Chen, Int. J. Theor. Phys. 53, 1454 (2014)

    Article  Google Scholar 

  35. Y J Duan, X W Zha, X M Sun and J F Xia, Int. J. Theor. Phys. 53, 2697 (2014)

    Article  Google Scholar 

  36. M H Sang, Int. J. Theor. Phys. 55, 380 (2016)

  37. R G Zhou, C Qian and H Ian, IEEE Access 7, 42445 (2019)

    Article  Google Scholar 

  38. M Sang, Int. J. Theor. Phys. 55, 1333 (2016)

  39. M S S Zadeh, M Houshmand and H Aghababa, Int. J. Theor. Phys. 56, 2101 (2017)

    Article  Google Scholar 

  40. J Chen, D Li, M Liu and Y Yang, IEEE Access 8, 28925 (2020)

    Article  Google Scholar 

  41. R G Zhou, R Xu and H Lan, IEEE Access 8, 44269 (2019)

    Article  Google Scholar 

  42. V Verma, IEEE Commun. Lett. 25, 936 (2020)

    Google Scholar 

  43. V Verma, Phys. Scr. 95, 115101 (2020)

    Article  ADS  Google Scholar 

  44. S Hassanpour and M Houshmand, Quant. Inf. Proc. 15, 905 (2016)

    Article  Google Scholar 

  45. R G Zhou, X Li, C Qian and H Ian, Int. J. Theor. Phys. 59, 166 (2020)

    Article  Google Scholar 

  46. M Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005)

    Article  ADS  Google Scholar 

  47. W H Zurek, Phys. Today 44, 36 (1991)

    Article  Google Scholar 

  48. H J Briegel and R Raussendorf, Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  49. M Q Lone, A Dey and S Yarlagadda, Solid State Commun. 202, 73 (2015)

    Article  ADS  Google Scholar 

  50. A Farouk et al, Front. Phys. 13, 130306 (2018)

    Article  Google Scholar 

  51. P Espoukeh and P Pedram, Quant. Inf. Proc. 13, 1789 (2014)

    Article  Google Scholar 

  52. C Jiang,Y Z Wei and M Jiang, Int. J. Theor. Phys. 61, 1 (2022)

    Article  ADS  Google Scholar 

  53. S Oh, S Lee and H W Lee, Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  54. D F Li, R J Wang, F L Zhang, E Baagyere, Z Qin, H Xiong and H Zhan, Quant. Inf. Proc. 15, 4819 (2016)

    Article  Google Scholar 

  55. M S Sadeghi-Zadeh, M Houshmand, H Aghababa, M H Kochakzadeh and F Zarmehi, Quant. Inf. Proc. 18, 1 (2019)

    Article  Google Scholar 

  56. Y H Li and X M Jin, Quant. Inf. Proc. 15, 929 (2016)

    Article  Google Scholar 

  57. R Dai and H S Li, Int. J. Theor. Phys. 61, 1 (2022)

    Article  Google Scholar 

  58. J Malik, M Lone and R Malla, to be published

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffar Qadir Lone.

Appendix A. Construction of six-qubit entangled channel on IBM quantum composer platform

Appendix A. Construction of six-qubit entangled channel on IBM quantum composer platform

In our proposed BQT scheme, utilising the six-qubit cluster state as the quantum channel, bilateral transmission of a special three-qubit state is achieved. Here, the construction of the six-qubit entangled quantum channel is presented using two H gates and four CNOT gates from single-qubit states. The corresponding quantum circuit as shown in figure 3 is developed on IBM quantum composer making it practically realisable.

The six-qubit channel is constructed from the joint state of six single-qubit states as an input in (3).

$$\begin{aligned} {|\psi \rangle _{0}=|0\rangle _{1}\otimes |0\rangle _{2}\otimes |0\rangle _{3}\otimes |0\rangle _{4}\otimes |0\rangle _{5}\otimes |0\rangle _{6}}. \end{aligned}$$
(A.1)

The construction of the quantum channel is as follows:

1. Hadamard gate (H) is applied on qubits 1 and 4, and the corresponding state is

$$\begin{aligned} |{\psi ^{\prime }\rangle }= & {} \frac{1}{2} \big ((|0\rangle +|{1}\rangle )_{1}\otimes |0\rangle _{2}\otimes |0\rangle _{3} \nonumber \\{} & {} \quad \otimes (|0\rangle +|{1}\rangle )_{4}\otimes |0\rangle _{5}\otimes |0\rangle _{6} \big ). \end{aligned}$$
(A.2)

2. Four CNOT gates are applied on qubit pairs (1,2), (2,3), (4,5) and (5,6) with the first qubit being the control and the second target to get the required six qubit entangled state.

$$\begin{aligned} |\phi \rangle _{123456}{} & {} =\frac{1}{2}(|{000000}\rangle +|{000111}\rangle \nonumber \\ {}{} & {} \quad +|{111000}\rangle + |{111111}\rangle ). \end{aligned}$$
(A.3)

This six-qubit quantum channel constructed on the IBM quantum composer platform (eq. (A.3)) can also be represented by the amplitude of the corresponding computational basis states as shown in figure 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, J.A., Lone, M.Q. & Malla, R.A. Symmetric bidirectional quantum teleportation using a six-qubit cluster state as a quantum channel. Pramana - J Phys 97, 50 (2023). https://doi.org/10.1007/s12043-023-02521-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02521-4

Keywords

PACS Nos

Navigation