Skip to main content
Log in

Quantum teleportation through noisy channels with multi-qubit GHZ states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger–Horne–Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equation with the noisy channels that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation for \(n\)-qubit GHZ states \(n\in \{4,5,6\}\) where Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Using the average fidelity, we show that 3GHZ state is more robust than \(n\)GHZ state under most noisy channels. However, \(n\)GHZ state preserves same quantum information with respect to Einstein–Podolsky–Rosen and 3GHZ states where the noise is in \(x\) direction in which the fidelity remains unchanged. We explicitly show that Jung et al.’s conjecture (Phys Rev A 78:012312, 2008), namely “average fidelity with same-axis noisy channels is in general larger than average fidelity with different-axes noisy channels,” is not valid for 3GHZ and 4GHZ states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Chakrabarty, I.: Teleportation via a mixture of a two qubit subsystem of a N-qubit W and GHZ state. Eur. Phys. J. D 57, 265 (2010)

    Article  ADS  Google Scholar 

  4. Liang, H.-Q., Liu, J.-M., Feng, S.-S., Chen, J.-G.: Quantum teleportation with partially entangled states via noisy channels. Quantum Inf. Process. 12, 2671 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Wang, X.-W., Shan, Y.-G., Xia, L.-X., Lu, M.-W.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364, 7 (2007)

    Article  ADS  MATH  Google Scholar 

  6. Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  8. Wang, L.-Q., Zha, X.-W.: Two schemes of teleportation one-particle state by a three-particle GHZ state. Opt. Commun. 283, 4118 (2010)

    Article  ADS  Google Scholar 

  9. Gorbachev, V.N., Rodichkina, A.A., Truilko, A.I.: On preparation of the entangled W-states from atomic ensembles. Phys. Lett. A 310, 339 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Joo, J., Park, Y.-J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003)

    Article  ADS  Google Scholar 

  11. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  12. Hu, M.-L.: Robustness of Greenberger–Horne–Zeilinger and W states for teleportation in external environments. Phys. Lett. A 375, 922 (2011)

    Article  ADS  Google Scholar 

  13. Pati, A.K.: Assisted cloning and orthogonal complementing of an unknown state. Phys. Rev. A 61, 022308 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. Jung, E., Hwang, M.R., Park, D.K., Son, J.W., Tamaryan, S.: Perfect quantum teleportation and superdense coding with \(P_{max} = 1/2\) states. arXiv:0711.3520

  15. Ma, Z.H., Zhang, F.L., Deng, D.L., Chen, J.L.: Bounds of concurrence and their relation with fidelity and frontier states. Phys. Lett. A 373, 1616 (2009)

    Article  ADS  MATH  Google Scholar 

  16. Wang, X., Sun, Z., Wang, Z.D.: Operator fidelity susceptibility: an indicator of quantum criticality. Phys. Rev. A 79, 012105 (2010)

    Article  ADS  Google Scholar 

  17. Ma, J., Xu, L., Xiong, H., Wang, X.: Reduced fidelity susceptibility and its finite-size scaling behaviors in the Lipkin–Meshkov–Glick model. Phys. Rev. E 78, 051126 (2008)

    Article  ADS  Google Scholar 

  18. Lu, X.-M., Sun, Z., Wang, X., Zanardi, P.: Operator fidelity susceptibility, decoherence, and quantum criticality. Phys. Rev. A 78, 032309 (2008)

    Article  ADS  Google Scholar 

  19. Giorda, P., Zanardi, P.: Quantum chaos and operator fidelity metric. Phys. Rev. E 81, 017203 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  20. Horodecki, M., Horodocki, P., Horodocki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Banaszek, K.: Fidelity balance in quantum operations. Phys. Rev. Lett. 86, 1366 (2001)

    Article  ADS  Google Scholar 

  22. Jung, E., Hwang, M.R., Park, D.K., Son, J.W., Tamaryan, S.: Mixed-state entanglement and quantum teleportation through noisy channels. J. Phys. A 41, 385302 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  24. Han, X.P., Liu, J.M.: Amplitude damping effects on controlled teleportation of a qubit by a tripartite W state. Phys. Scr. 78, 015001 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Rao, D.D.B., Panigrahi, P.K., Mitra, C.: Teleportation in the presence of common bath decoherence at the transmitting station. Phys. Rev. A 78, 022336 (2008)

    Article  ADS  Google Scholar 

  26. Jung, E., Hwang, M.R., Ju, Y.H., Kim, M.S., Yoo, S.K., Kim, H., Park, D.K., Son, J.W., Tamaryan, S., Cha, S.-K.: Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)

    Article  ADS  Google Scholar 

  27. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Robabeh Rahimi for fruitful discussions and suggestions and for a critical reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Pedram.

Appendix

Appendix

Here, we present quantum teleportation process through (\(L_{2,x},L_{3,y},L_{4,z}\)) noisy channel for 3GHZ state, which is not studied in Ref. [26]. For this case, the density matrix after \(\delta t\) reads

$$\begin{aligned} \varepsilon (\rho _{3\mathrm{GHZ}})\Big |_{t=\delta t} = \frac{1}{2}{\left( \begin{array}{llllllll} 1 -2 \kappa \delta t &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1-4 \kappa \delta t \\ 0 &{} 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \kappa \delta t &{} 0 &{} 0 &{} -\kappa \delta t &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} \kappa \delta t &{} \kappa \delta t &{} 0&{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} \kappa \delta t &{} \kappa \delta t &{} 0&{} 0 &{} 0 \\ 0 &{} 0 &{} -\kappa \delta t &{} 0 &{} 0 &{} \kappa \delta t &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0&{} 0 \\ 1 -4 \kappa \delta t &{} 0 &{} 0 &{} 0 &{} 0 &{}0 &{} 0 &{} 1 -2 \kappa \delta t \end{array} \right) .} \end{aligned}$$
(61)

So, we examine the following ansatz

$$\begin{aligned} \varepsilon (\rho _{3\mathrm{GHZ}}) = \left( \begin{array}{llllllll} a &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} d \\ 0 &{} b&{} 0 &{} 0 &{} 0 &{} 0 &{} e &{} 0 \\ 0 &{} 0 &{} c &{} 0 &{} 0 &{} f &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} c &{} g &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} g &{} c &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} f &{} 0&{} 0 &{} c &{} 0 &{} 0 \\ 0 &{} e &{} 0 &{} 0&{} 0 &{} 0 &{} b &{} 0 \\ d &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0&{} a \end{array} \right) , \end{aligned}$$
(62)

which results in two sets of coupled equations

$$\begin{aligned} \left\{ \begin{array}{l} \dot{a}(t) = 2k\Big (c(t)-a(t)\Big ),\\ \dot{b}(t) = 2k\Big (c(t)-b(t)\Big ),\\ \dot{c}(t) = k\Big (a(t)+b(t)-2c(t)\Big ), \end{array}\right. \end{aligned}$$
(63)

and

$$\begin{aligned} \left\{ \begin{array}{l} \dot{d}(t) = k\Big (g(t)-4d(t)-f(t)\Big ),\\ \dot{e}(t) = k\Big (f(t)-4e(t)-g(t)\Big ),\\ \dot{f}(t) = k\Big (e(t)-d(t)-4f(t)\Big ),\\ \dot{g}(t) = k\Big (d(t)-e(t)-4g(t)\Big ), \end{array}\right. \end{aligned}$$
(64)

subject to \(a(0)=d(0)=1/2\) and \(b(0)=c(0)=e(0)=f(0)=g(0)=0\). The solutions are

$$\begin{aligned} \left\{ \begin{array}{l} a(t) =e^{2 \kappa t}d(t)=\frac{1}{8}\Big ( 1 + 2 e^{-2 \kappa t} + e^{-4 \kappa t}\Big ),\\ b(t) =-e^{2 \kappa t}e(t)=\frac{1}{8}\Big ( 1 -2 e^{-2 \kappa t} + e^{-4 \kappa t} \Big ),\\ c(t) =e^{2 \kappa t}g(t)=-e^{2 \kappa t}f(t)=\frac{1}{8}\Big ( 1 - e^{-4 \kappa t}\Big ). \end{array}\right. \end{aligned}$$
(65)

Using the unitary gate matrix which can be read off from Fig. 2 of Ref. [26], the fidelity, \(F(\theta , \phi )\), and the average fidelity, \(\overline{F}\), are given by

$$\begin{aligned} F(\theta , \phi ) = \frac{1}{2} \left[ 1 + e^{-2 \kappa t}\left( \cos ^2 \theta + \sin ^2 \theta \sin ^2 \phi \right) + e^{-4 \kappa t} \sin ^2 \theta \cos ^2 \phi \right] , \end{aligned}$$
(66)

and

$$\begin{aligned} \overline{F} = \frac{1}{6} \left( 3 + 2e^{-2 \kappa t}+ e^{-4 \kappa t} \right) . \end{aligned}$$
(67)

In Fig. 7, we depicted the average fidelity for 3GHZ state through various noises where the results for the same-axis and isotropic noises are given in Ref. [26]. Therefore, the average fidelity for (\(L_{2,x},L_{3,y},L_{4,z}\)) noise explicitly contradicts the conjecture proposed by Jung et al. [26].

Fig. 7
figure 7

The plot of time dependence of average fidelity through noisy channels for 3GHZ state

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espoukeh, P., Pedram, P. Quantum teleportation through noisy channels with multi-qubit GHZ states. Quantum Inf Process 13, 1789–1811 (2014). https://doi.org/10.1007/s11128-014-0766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0766-2

Keywords

Navigation