Skip to main content
Log in

Periodic solution of the cubic nonlinear Klein–Gordon equation and the stability criteria via the He-multiple-scales method

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The current work demonstrated a new technique to improve the accuracy and computational efficiency of the nonlinear partial differential equation based on the homotopy perturbation method (HPM). In this proposal, two different homotopy perturbation expansions, the outer expansion and the inner one, are introduced based on two different homotopy parameters. The multiple-scale homotopy technique (He-multiple-scalas method) is applied as an outer perturbation for the nonlinear Klein–Gordon equation. A highly accurate periodic temporal solution has been derived from three orders of perturbation. The amplitude equation, which is imposed as a uniform condition, is of the fourth-order cubic–quintic nonlinear Schrödinger equation. The standard HPM with another homotopy parameter has been used as an inner perturbation to obtain a spatial solution of the nonlinear Schrödinger equation. The cubic–quintic Landau equation is obtained in the inner perturbation technique. Finally, the approximate solution is derived from the temporal and spatial solutions. Further, two different tools are used to obtain the same stability conditions. One of them is a new tool based on the HPM, by constructing the nonlinear frequency. The method adopted here is important and powerful for solving partial differential nonlinear oscillator systems arising in nonlinear science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E A Deeba and S A Khuri, J. Comput. Phys. 124, 442 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. S M El-Sayed, Chaos Solitons Fractals 18, 1025 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. D Kaya and S M El-Sayed, Appl. Math. Comput. 156, 341 (2004)

    MathSciNet  Google Scholar 

  4. M Wazwaz, Appl. Math. Comput. 173, 165 (2006)

    MathSciNet  Google Scholar 

  5. G Adomian, Solving frontier problems of physics: The decomposition method (Kluwer Academic, Dordrecht, 1994)

  6. E Yusufoglu, Appl. Math. Lett. 21, 669 (2008)

    Article  MathSciNet  Google Scholar 

  7. B Batiha, Aust. J. Basic Appl. Sci. 3, 3876 (2009)

    MathSciNet  Google Scholar 

  8. J H He, Int. J. Nonlinear Mech. 34, 699 (1999)

    Article  ADS  Google Scholar 

  9. Y Khan, Int. J. Nonlinear Sci. Numer. 10, 1373 (2009)

    Google Scholar 

  10. M E A Rabie, Afr. J. Math. Comput. Sci. Res8, 37 (2015)

    Article  Google Scholar 

  11. S A Khuri, J. Appl. Math. 1, 141 (2001)

    Article  MathSciNet  Google Scholar 

  12. Y Keskin, S Servi and G Oturanc, Proceedings of the World Congress on Engineering (WCE, London, UK, 2011) Vol. 1

  13. Z Odibat and S Momani, Phys. Lett. A 365, 351 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. D Kumar, J Singh, S Kumar and S Suchila, Alex. Eng. J. 53, 469 (2014)

    Article  Google Scholar 

  15. W Greiner, Relativistic quantum mechanics – wave equations, 3rd edn (Springer-Verlag, Berlin, 2000)

    Book  Google Scholar 

  16. M Dehghan and A Shokri, J. Comput. Appl. Math. 230, 400 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. A M Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 13, 889 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. A M Wazwaz, Appl. Math. Comput. 167, 1179 (2005)

    MathSciNet  Google Scholar 

  19. S M El-Sayed, Chaos Solitons Fractals 18, 1025 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. A Arda, C Tezcan and R Sever, Pramana – J. Phys. 88: 39 (2017)

    Article  ADS  Google Scholar 

  21. Sirendaoreji, Chaos Solitons Fractals 31, 943 (2007)

  22. M Rentoul and P D Ariel, Nonlinear Sci. Lett. A 2, 17 (2011)

    Google Scholar 

  23. M A Abdou, Nonlinear Sci. Lett. B 1, 99 (2011)

    Google Scholar 

  24. M Y Adamu and P Ogenyi, Nonlinear Sci. Lett. A 8, 240 (2017)

    Google Scholar 

  25. Y O El-Dib, Sci. Eng. Appl. 2, 96 (2017)

    Google Scholar 

  26. Y O El-Dib, Nonlinear Sci. Lett. A 8, 352 (2017)

    Google Scholar 

  27. Y O El-Dib, Int. Ann. Sci. 5, 12 (2018)

  28. H Aminikhah, F Pournasiri and F Mehrdoust, Pramana – J. Phys 86, 19 (2016)

    Article  ADS  Google Scholar 

  29. J H He, Comput. Meth. Appl. Mech. Eng. 178, 257 (1999)

    Article  ADS  Google Scholar 

  30. J H He, Int. J. Nonlinear Mech. 35, 37 (2000)

    Article  ADS  Google Scholar 

  31. J H He, Comput. Math. Appl. 57, 410 (2009)

    Article  MathSciNet  Google Scholar 

  32. J H He, Topol. Method Nonlinear Anal. 31, 205 (2008)

    ADS  Google Scholar 

  33. J H He, Int. J. Mod. Phys. B 20, 25561 (2006)

    Google Scholar 

  34. J H He, Int. J. Mod. Phys. B 22, 3487 (2008)

    Article  ADS  Google Scholar 

  35. J H He, Therm. Sci. 14, 565 (2010)

    ADS  Google Scholar 

  36. J H He, Int. J. Mod. Phys. B 20, 1141 (2006)

    Article  ADS  Google Scholar 

  37. J H He, Indian J. Phys. 88, 193 (2014)

    Article  ADS  Google Scholar 

  38. J H He, Abstr. Appl. Anal. 2012, 857612 (2012)

    Google Scholar 

  39. M Madani, M Fathizadeh, Y Khan and A Yildirim, Math. Comput. Model. 53, 1937 (2011)

    Article  Google Scholar 

  40. H K Mishra and A K Nagar, J. Appl. Math. 2012, 180315 (2012)

    Google Scholar 

  41. Z J Liu, M Adamu, S Yunbunga and J He, Therm. Sci. 21, 1843 (2017)

    Article  Google Scholar 

  42. A H Nayfeh, J. Appl. Mech. 4, 584 (1976)

    Article  Google Scholar 

  43. Y O El-Dib, Appl. Math. Lett. 7, 89 (1994)

    Article  MathSciNet  Google Scholar 

  44. Y O El-Dib, Nonlinear Dyn. 24, 399 (2001)

    Article  MathSciNet  Google Scholar 

  45. A H Nayfeh, Perturbation methods (Wiley, New York, 1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusry O El-Dib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dib, Y.O. Periodic solution of the cubic nonlinear Klein–Gordon equation and the stability criteria via the He-multiple-scales method. Pramana - J Phys 92, 7 (2019). https://doi.org/10.1007/s12043-018-1673-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1673-3

Keywords

PACS Nos

Navigation