Skip to main content
Log in

On the use of a high-order spectral method and the geometric progression for the analysis of stationary bifurcation of nonlinear problems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this research, we suggest employing red high-order meshless geometric progression technique to numerically explore stable bifurcation points and bifurcated branches. We proposed to use a high-order approach (HOA) for the solution of nonlinear problems. The proposed approach combines the asymptotic continuation technique and a discretization carried out using the quadratic spectral method. The governing equations are presented under a strong nonlinear formulation. The nonlinear equations are converted into a series of linear equations thanks to the high-order meshless approach (HOA). This method enables the precise detection of the bifurcation locations. A resolution strategy aims to handle bifurcation events for biharmonic problems by expanding in various geometries, where the stable issue becomes unstable after a critical point. The acquired findings are contrasted with those reported in the literature and with those computed using the high-order finite element approach coupled with geometric progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Cadou J-M, Potier-Ferry M, Cochelin B (2006) A numerical method for the computation of bifurcation points in fluid mechanics. Eur J Mech-B/Fluids 25(2):234–254

    MathSciNet  MATH  Google Scholar 

  2. Rammane M, Mesmoudi S, Tri A, Braikat B, Damil N (2021) Bifurcation points and bifurcated branches in fluids mechanics by high-order mesh-free geometric progression algorithms. Int J Numer Methods Fluids 93(3):834–852

    MathSciNet  MATH  Google Scholar 

  3. Damil N, Potier-Ferry M (1990) A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures. Int J Eng Sci 28(9):943–957

    MathSciNet  MATH  Google Scholar 

  4. Cochelin B, Medale M (2013) Power series analysis as a major breakthrough to improve the efficiency of asymptotic numerical method in the vicinity of bifurcations. J Comput Phys 236:594–607

    MathSciNet  Google Scholar 

  5. Tr A, Askour O, Braikat B, Zahrouni H, Potier-Ferry M (2019) Fundamental solutions and asymptotic numerical methods for bifurcation analysis of nonlinear bi-harmonic problems. Numer Methods Partial Differ Equ 35(6):2091–2102

    MathSciNet  MATH  Google Scholar 

  6. Drissi M, Mansouri M, Mesmoudi S (2022) Fluid–structure interaction with the spectral method: application to a cylindrical tube subjected to transverse flow. Int J Dyn Control 1–7

  7. Drissi M, Mansouri M, Mesmoudi S, Saadouni K (2022) On the use of a pseudo-spectral method in the asymptotic numerical method for the resolution of the Ginzburg-Landau envelope equation. Eng Struct 262:114236

    Google Scholar 

  8. Jawadi A, Boutyour H, Cadou J-M (2013) Asymptotic numerical method for steady flow of power-law fluids. J Non-Newton Fluid Mech 202:22–31

    Google Scholar 

  9. Rammane M, Mesmoudi S, Tri A, Braikat B, Damil N (2022) Mesh-free model for Hopf’s bifurcation points in incompressible fluid flows problems. Int J Numer Methods Fluids 94(9):1566–1581

    MathSciNet  MATH  Google Scholar 

  10. Seydel R (2009) Practical bifurcation and stability analysis, vol 5. Springer, Berlin

    MATH  Google Scholar 

  11. Dijkstra HA, Wubs FW, Cliffe AK, Doedel E, Dragomirescu IF, Eckhardt B, Gelfgat AY, Hazel AL, Lucarini V, Salinger AG et al (2014) Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun Comput Phys 15(1):1–45

    MathSciNet  MATH  Google Scholar 

  12. Cochelin B (1994) A path-following technique via an asymptotic-numerical method. Comput Struct 53(5):1181–1192

    MATH  Google Scholar 

  13. Ziapkoff M, Duigou L, Robin G, Cadou J-M, Daya EM (2022) A high order Newton method to solve vibration problem of composite structures considering fractional derivative Zener model. Mech Adv Mater Struct 1–11

  14. Linares F, Mendez A, Ponce G (2021) Asymptotic behavior of solutions of the dispersion generalized Benjamin–Ono equation. J Dyn Differ Equ 33(2):971–984

    MathSciNet  MATH  Google Scholar 

  15. Claude B, Duigou L, Girault G, Cadou J (2019) Study of damped vibrations of a vibroacoustic interior problem with viscoelastic sandwich structure using a high order Newton solver. J Sound Vib 462:114947

    Google Scholar 

  16. Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551

    MathSciNet  MATH  Google Scholar 

  17. He B-S, Liao L-Z, Yuan X-M (2006) A LQP based interior prediction-correction method for nonlinear complementarity problems. J Comput Math 24:33–44

    MathSciNet  MATH  Google Scholar 

  18. Mei R, Shyy W, Yu D, Luo L-S (2000) Lattice Boltzmann method for 3-D flows with curved boundary. J Comput Phys 161(2):680–699

    MATH  Google Scholar 

  19. Mesmoudi S, Askour O, Rammane M, Bourihane O, Tri A, Braikat B (2022) Spectral Chebyshev method coupled with a high order continuation for nonlinear bending and buckling analysis of functionally graded sandwich beams. Int J Numer Methods Eng 123(24):6111–6126

    MathSciNet  Google Scholar 

  20. Yang J, Potier-Ferry M, Akpama K, Hu H, Koutsawa Y, Tian H, Zézé DS (2020) Trefftz methods and Taylor series. Arch Comput Methods Eng 27(3):673–690

    MathSciNet  Google Scholar 

  21. Mohri F, Damil N, Potier-Ferry M (2010) Linear and non-linear stability analyses of thin-walled beams with monosymmetric I sections. Thin-Walled Struct. 48(4–5):299–315

    Google Scholar 

  22. Xu F, Koutsawa Y, Potier-Ferry M, Belouettar S (2015) Instabilities in thin films on hyperelastic substrates by 3D finite elements. Int J Solids Struct 69:71–85

    Google Scholar 

  23. Debeurre M, Grolet A, Cochelin B, Thomas O (2023) Finite element computation of nonlinear modes and frequency response of geometrically exact beam structures. J Sound Vib 548:117534

    Google Scholar 

  24. He J-H (2006) Some asymptotic methods for strongly nonlinear equations. Int J Mod Phys B 20(10):1141–1199

    MathSciNet  MATH  Google Scholar 

  25. He C-H, Tian D, Moatimid GM, Salman HF, Zekry MH (2022) Hybrid Rayleigh-Van der Pol–Duffing oscillator: stability analysis and controller. J Low Freq Noise Vib Act Control 41(1):244–268

    Google Scholar 

  26. He C-H, El-Dib YO (2022) A heuristic review on the homotopy perturbation method for non-conservative oscillators. J Low Freq Noise Vib Act Control 41(2):572–603

    Google Scholar 

  27. He J-H (1998) Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 167(1–2):57–68

    MathSciNet  MATH  Google Scholar 

  28. He J-H (2000) Variational iteration method for autonomous ordinary differential systems. Appl Math Comput 114(2–3):115–123

    MathSciNet  MATH  Google Scholar 

  29. He J-H (2007) Variational approach for nonlinear oscillators. Chaos Solitons Fract 34(5):1430–1439

    MathSciNet  MATH  Google Scholar 

  30. He J-H (2003) Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 135(1):73–79

    MathSciNet  MATH  Google Scholar 

  31. He J-H (2005) Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fract 26(3):695–700

    MATH  Google Scholar 

  32. Liu T (2022) Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation. J Comput Appl Math 413:114393

    MathSciNet  MATH  Google Scholar 

  33. Wazwaz A-M (2005) The tan h method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations. Chaos, Solitons Fract 25(1):55–63

    MATH  Google Scholar 

  34. Ibrahim R, El-Kalaawy O (2007) Extended tanh-function method and reduction of nonlinear Schrödinger-type equations to a quadrature. Chaos Solitons Fract 31(4):1001–1008

    MATH  Google Scholar 

  35. Wazwaz A (2005) Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method. Comput Math Appl 50(10–12):1685–1696

    MathSciNet  MATH  Google Scholar 

  36. Zhao X, Wang L, Sun W (2006) The repeated homogeneous balance method and its applications to nonlinear partial differential equations. Chaos Solitons Fract 28(2):448–453

    MathSciNet  MATH  Google Scholar 

  37. He J-H, Wu X-H (2006) Exp-function method for nonlinear wave equations. Chaos Solitons Fract 30(3):700–708

    MathSciNet  MATH  Google Scholar 

  38. Zhang S (2007) Exp-function method for solving Maccari’s system. Phys Lett A 371(1–2):65–71

    MATH  Google Scholar 

  39. Wu X-HB, He J-H (2008) Exp-function method and its application to nonlinear equations. Chaos Solitons Fract 38(3):903–910

    MathSciNet  MATH  Google Scholar 

  40. Boyas S, Guével A (2011) Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms. Ann Phys Rehabil Med 54(2):88–108

    Google Scholar 

  41. Cochelin B, Vergez C (2009) A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J Sound Vib 324(1–2):243–262

    Google Scholar 

  42. Trefethen LN Spectral methods in MATLAB, volume 10 of software, environments, and tools. Society for Industrial and Applied Mathematics (SIAM), p 24

  43. Mason JC, Handscomb DC (2022) Chebyshev polynomials. Chapman and Hall, Boca Raton

    MATH  Google Scholar 

  44. Rivlin TJ (2020) Chebyshev polynomials. Courier Dover Publications, New York

    MATH  Google Scholar 

  45. Kailath T, Olshevsky V (1995) Displacement structure approach to Chebyshev–Vandermonde and related matrices. Integr Equ Oper Theory 22(1):65–92

    MathSciNet  MATH  Google Scholar 

  46. Bayliss A, Class A, Matkowsky BJ (1995) Roundoff error in computing derivatives using the Chebyshev differentiation matrix. J Comput Phys 116(2):380–383

    MATH  Google Scholar 

  47. Weideman JA, Reddy SC (2000) A MATLAB differentiation matrix suite. ACM Trans Math Softw (TOMS) 26(4):465–519

    MathSciNet  Google Scholar 

  48. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2007) Spectral methods: fundamentals in single domains. Springer, Berlin

    MATH  Google Scholar 

  49. Julien K, Watson M (2009) Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods. J Comput Phys 228(5):1480–1503

    MathSciNet  MATH  Google Scholar 

  50. Mai-Duy N, Tanner RI (2007) A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems. J Comput Appl Math 201(1):30–47

    MathSciNet  MATH  Google Scholar 

  51. Park J-S, Ku S-H (2020) A spectral decomposition for flows on uniform spaces. Nonlinear Anal 200:111982

  52. Karageorghis A (1991) A note on the satisfaction of the boundary conditions for Chebyshev collocation methods in rectangular domains. J Sci Comput 6(1):21–26

    MathSciNet  MATH  Google Scholar 

  53. Jarohs S, Kulczycki T, Salani P (2022) On the Bernoulli free boundary problems for the half Laplacian and for the spectral half Laplacian. Nonlinear Anal 222:112956

    MathSciNet  MATH  Google Scholar 

  54. Ferrero A, Lamberti PD (2022) Spectral stability of the Steklov problem. Nonlinear Anal 222:112989

    MathSciNet  MATH  Google Scholar 

  55. Bambusi D, Langella B, Montalto R (2022) Spectral asymptotics of all the eigenvalues of Schrödinger operators on flat tori. Nonlinear Anal 216:112679

    MATH  Google Scholar 

  56. Lu Y, Fu Y (2020) Multiplicity results for solutions of p-biharmonic problems. Nonlinear Anal 190:111596

    MathSciNet  MATH  Google Scholar 

  57. Novaga M, Okabe S (2016) The two-obstacle problem for the parabolic biharmonic equation. Nonlinear Anal Theory Methods Appl 136:215–233

    MathSciNet  MATH  Google Scholar 

  58. Linares F, Ponce G (2020) Unique continuation properties for solutions to the Camassa–Holm equation and related models. Proc Am Math Soc 148(9):3871–3879

    MathSciNet  MATH  Google Scholar 

  59. Linares F, Ponce G, Smith DL (2017) On the regularity of solutions to a class of nonlinear dispersive equations. Math Ann 369(1):797–837

    MathSciNet  MATH  Google Scholar 

  60. Schmitt K (2020) Bifurcation problems for second order systems. Nonlinear Anal 201:112042

    MathSciNet  MATH  Google Scholar 

  61. de la Parra AB, Julio-Batalla J, Petean J (2021) Global bifurcation techniques for Yamabe type equations on Riemannian manifolds. Nonlinear Anal 202:112140

    MathSciNet  MATH  Google Scholar 

  62. Izydorek M, Janczewska J, Waterstraat N (2021) The equivariant spectral flow and bifurcation of periodic solutions of Hamiltonian systems. Nonlinear Anal 211:112475

    MathSciNet  MATH  Google Scholar 

  63. Li C, Wang J (2021) Bifurcation from infinity of the Schrödinger equation via invariant manifolds. Nonlinear Anal 213:112490

    MATH  Google Scholar 

  64. Chhetri M, Girg P (2020) Some bifurcation results for fractional Laplacian problems. Nonlinear Anal 191:111642

    MathSciNet  MATH  Google Scholar 

  65. Gervais J-J, Sadiky H (2002) A new steplength control for continuation with the asymptotic numerical method. IMA J Numer Anal 22(2):207–229

    MathSciNet  MATH  Google Scholar 

Download references

Funding

No financing for this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work.

Corresponding author

Correspondence to Mohamed Drissi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drissi, M., Mesmoudi, S. & Mansouri, M. On the use of a high-order spectral method and the geometric progression for the analysis of stationary bifurcation of nonlinear problems. Int. J. Dynam. Control 11, 2633–2643 (2023). https://doi.org/10.1007/s40435-023-01141-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01141-5

Keywords

Navigation