Skip to main content
Log in

Discrimination of Coffea liberica and Coffea liberica var. Dewevrei: Silverskin Morphological Traits and seed Diterpenes Content

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Coffea liberica originally found near Monrovia in Liberia is the third commercially exploited coffee species known for its larger cherries, compared with those of Coffea arabica or Coffea canephora; it contributes less than one per cent of the marketed coffee. The latter reflects in part the beverage quality being inferior to that of Arabica and in part the agronomical performance not satisfying when compared with those of Robusta. However, this species remains still attracting for some genetical characteristic like certain pest resistance genes in breeding programs as the resistance to coffee leaf rust conferred by the SH3 locus.

Currently, all Liberica taxa were grouped in one species, C. liberica W. Bull ex Hiern that included two varieties, C. liberica var. liberica, C. liberica var. dewevrei (De Wild. and T. Durand) Le Brun, and a form C. liberica f. bwambensis Bridson. The taxonomic differences between the two varieties still raise doubts that leave the question ‘species or variety?‘ still open. For this reason, the search of possible traits or molecular markers able to discriminate and shed light on these doubts has never stopped. In this paper we focus our attention on two characteristics not yet investigated in detail: silverskin tissue and seed diterpenes.

For the first time, an in-depth microscopic study of silverskin morphology was used to discriminate liberica from dewevrei coupled with the diterpenes characterization, the major components of the unsaponifiable fraction of seed lipids, already known as molecular markers and efficiently used for coffee species authentication purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information file.

Abbreviations

OM:

Optical Microscope

16OMC:

16-O-methylcafestol

SEM:

Scanning Electron Microscope

References

  • Anthony F, Clifford MN, Noirot M (1993) Biochemical diversity in the genus Coffea L.: chlorogenic acids, caffeine and mozambioside contents. Genet Resour Crop Evol 40:61–70. DOI https://doi.org/10.1007/BF00052636

    Article  Google Scholar 

  • Arboleda E (2019) Comparing Performances of Data Mining Algorithms for Classification of Green Coffee Beans. Int J Eng Adv Res Tech 8:1563–1567

    Google Scholar 

  • Balinado LO, Cardenas LB (2019) Trichome Composition of Leaf Domatiaas Potential Morphoanatomical Marker of the Four Commercially Viable Coffea Species. Philipp J Sci 148:385–387

    Google Scholar 

  • Baltazar AMP, Buot IE Jr (2019) Short Communication: Leaf architectural analysis of taxonomically confusing coffee species: Coffea liberica and Coffea liberica var. dewevrei Biodiversitas 20:1560–1567. DOI https://doi.org/10.13057/biodiv/D200611

    Article  Google Scholar 

  • Bridson DM (1988a) Coffea. In: Polhill RM (ed) Flora of Tropical East Africa, Rubiaceae, Part 2, Rotterdam: Balkema, pp 415–474

  • Bridson DM (1988b) Classification. In: Wrigley G (ed) Coffee – Tropical Agriculture Series. Longman Scientific & Technical, Harlow, pp 61–75

    Google Scholar 

  • Campa C, Ballester JF, Doulbeau S, Dussert S, Hamon S, Noirot M (2004) Trigonelline and sucrose diversity in wild Coffea species. Food Chem 88:39–43. DOI https://doi.org/10.1016/j.foodchem.2004.01.020

    Article  CAS  Google Scholar 

  • Cao EP, Constantino-Santos DM, Ramos LAP, Santos BS, Quilang JP, Mojica RM (2014) Molecular and morphological differentiation among Coffea (Rubiaceae) varieties grown in the farms of Cavite Province, Philippines. Philipp Sci Lett 7:387–397

    Google Scholar 

  • Chevalier A (1947) In: Lechevalier P (ed) Les caféiers du globe III – Systématique des caféiers et faux-caféiers, Maladies et Insectes nuisibles. Encyclopédie biologique XXVIII, Paris, p 352

    Google Scholar 

  • Claude J-F, Joseph P, Abati Y, Baillard K, Jean-Francois Y, Ely-Marius S, Sophie S, Simphor J-E, Major P, Marc J-V (2019) Environments Conducive to Coffea liberica in Martinique. Int J Sci 8:26–37. DOI https://doi.org/10.18483/ijSci.2235

    Article  Google Scholar 

  • Crisafulli P, Navarini L, Pallavicini A, Illy A (2014) Coffea liberica Bull. ex Hiern: seed morphological observations. In: Proceeding of 25th International Conference on Coffee Science, ASIC Colombia, Armenia, 2014

  • Charr J-C, Garavito A, Guyeux C, Crouzillat D, Descombes P, Fournier C, Ly SN, Raharimalala EN, Rakotomalala J-J, Stoffelen P, Janssens S, Hamon P, Guyot R (2020) Complex evolutionary history of coffees revealed by full plastid genomes and 28,800 nuclear SNP analyses, with particular emphasis on Coffea canephora (Robusta coffee). Mol Phylogenet Evol 151:106906. DOI https://doi.org/10.1016/j.ympev.2020.106906

    Article  PubMed  Google Scholar 

  • Davis AP, Govaerts R, Bridson DM, Stoffelen P (2006) An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot J Linn Soc 152:465–512. DOI https://doi.org/10.1111/j.1095-8339.2006.00584.x

    Article  Google Scholar 

  • de Roos B, van der Weg G, Urgert R, van de Bovenkamp P, Charrier A, Katan MB (1997) Levels of cafestol, kahweol and related diterpenoids in wild species of the coffee plant Coffea. J Agric Food Chem 45:3065–3069. DOI https://doi.org/10.1021/jf9700900

    Article  Google Scholar 

  • de Souza RMN, Benassi MT (2012) Discrimination of commercial roasted and ground coffee according to chemical composition. J Braz Chem Soc 23:1347–1354. DOI https://doi.org/10.1590/S0103-50532012000700020

    Article  Google Scholar 

  • Dedecca DM (1957) Anatomia e desenvolvimento ontogenético de Coffea arabica L. var. typica Cramer Bragantia 16. DOI https://doi.org/10.1590/S0006-87051957000100023

  • Dussert S, Laffargue A, de Kochko A, Joet T (2008) Effectiveness of the fatty acid and sterol composition of seeds for the chemotaxonomy of Coffea subgenus Coffea. Phytochemistry 69:2950–2960. DOI https://doi.org/10.1016/j.phytochem.2008.09.021

    Article  CAS  PubMed  Google Scholar 

  • Finotello C, Forzato C, Gasparini A, Mammi S, Navarini L, Schievano E (2017) NMR quantification of 16-O-methylcafestol and kahweol in Coffea canephora var. robusta beans from different geographical origins. Food Control 75:62–69. DOI https://doi.org/10.1016/j.foodcont.2016.12.019

    Article  CAS  Google Scholar 

  • Guercia E, Colomban S, Navarini L (2020) 16-O-Methylated diterpenes in green Coffea arabica: ultrahigh-performance liquid chromatography-tandem mass spectrometry method optimization and validation. J Mass Spectrom e4636. DOI https://doi.org/10.1002/jms.4636

    Article  Google Scholar 

  • Gunning Y, Defernez M, Watson AD, Beadman N, Colquhoun IJ, Le Gall G, Philo M, Garwood H, Williamson D, Davis AP, Kemsley EK (2018) 16-O-methylcafestol is present in ground roast Arabica coffees: Implications for authenticity testing. Food Chem 248:52–60. DOI https://doi.org/10.1016/j.foodchem.2017.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamon P, Siljak-Yakovlev S, Srisuwan S, Robin O, Poncet V, Hamon S, de Kochko A (2009) Physical mapping of rDNA and heterochromatin in chromosomes of 16 Coffea species: A revised view of species differentiation. Chromosome Res 17:291–304. DOI https://doi.org/10.1007/s10577-009-9033-2

    Article  CAS  PubMed  Google Scholar 

  • Hamon P, Grover CE, Davis AP, Rakotomalala JJ, Raharimalala NE, Albert VA, Sreenath HL, Stoffelen P, Mitchell SE, Couturon E, Hamon S, de Kochko A, Crouzillat D, Rigoreau M, Sumirat U, Akaffou S, Guyot R (2017) Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content. Mol Phylogenet Evol 109:351–361. DOI https://doi.org/10.1016/j.ympev.2017.02.009

    Article  CAS  PubMed  Google Scholar 

  • Herrera J, Combes C, Cortina H, Alvarado G, Lashermes P (2002) Gene introgression into Coffea arabica by way of triploid hybrids (C. arabica x C. canephora). Heredity 89:488–494. DOI https://doi.org/10.1038/sj.hdy.6800171

    Article  CAS  PubMed  Google Scholar 

  • Illy A, Viani R (2005) Espresso coffee, The science of quality. Elsevier Academic Press

  • Ismail I, Anuar MS, Shamsudin R (2014) Physical properties of Liberica coffee (Coffea liberica) berries and beans. Pertanika J Sci Technol 22:65–79

    Google Scholar 

  • Kim HG, Kim JY, Hwang YP, Lee KJ, Lee KY, Kim DH, Kim DH, Jeong HG (2006) The coffee diterpenes kahweol inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules in human endothelial cells. Toxicol Appl Pharmacol 217:332–341. DOI https://doi.org/10.1016/j.taap.2006.09.013

    Article  CAS  PubMed  Google Scholar 

  • Lashermes P, Combes M-C, Ribas A, Cenci A, Mahé L, Etienne H (2010) Genetic and physical mapping of the S H 3 region that confers resistance to leaf rust in coffee tree (Coffea arabica L.). Tree Genet Genomes 6:973–980. DOI https://doi.org/10.1007/s11295-010-0306-x

    Article  Google Scholar 

  • Lebrun J (1941) Recherches morphologiques et systématiques sur les caféiers du Congo. Mem Inst Colon Belge Sci Tech VIII 11:1–183

    Google Scholar 

  • Lee KJ, Choi JH, Jeong HG (2007) Hepatoprotective and antioxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice. Food Chem Toxicol 45:2118–2125

    Article  CAS  PubMed  Google Scholar 

  • Lucon Wagemaker TA, Limonta Carvalho CR, Borlina Maia N, Baggio SR, Guerreiro Filho O (2011) Sun protection factor, content and composition of lipid fraction of green coffee beans. Ind Crops Prod 33:469–473. DOI https://doi.org/10.1016/j.indcrop.2010.10.026

    Article  CAS  Google Scholar 

  • Maurin O, Davis AP, Chester M, Mvungi EF, Jaufeerally-Fakim Y, Fay MF (2007) Towards a Phylogeny for Coffea (Rubiaceae): Identifying Well-supported Lineages Based on Nuclear and Plastid DNA Sequences. Ann Bot 100:1565–1583. DOI https://doi.org/10.1093/aob/mcm257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes AJT (1941) Cytological Observations in Coffea. VI. Embryo and Endosperm Development in Coffea arabica L. Am J Bot 28:784–789

    Article  Google Scholar 

  • Myers R, Kawabata A, Cho A, Nakamoto ST (2020) Grafted coffee increases yield and survivability. Horttechnology 30:428–432. DOI https://doi.org/10.21273/horttech04550-20

    Article  CAS  Google Scholar 

  • Mongrand S, Badoc A, Patouille B, Lacomblez C, Chavent M, Bessoule J-J (2005) Chemotaxonomy of the Rubiaceae family based on leaf fatty acid composition. Phytochemistry 66:549–559. DOI https://doi.org/10.1016/j.phytochem.2004.12.021

    Article  CAS  PubMed  Google Scholar 

  • N’Diaye A, Poncet V, Louarn J, Hamon S, Noirot M (2005) Genetic differentiation between Coffea liberica var. liberica and C. liberica var. dewevrei and comparison with C. canephora. Plant Syst Evol 253:95–104. DOI https://doi.org/10.1007/s00606-005-0300-I

    Article  Google Scholar 

  • Prakash NS, Marques DV, Varzea VMP, Silva MC, Combes MC, Lashermes P (2004) Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into C. arabica L. Theor Appl Genet 109:1311–1317. DOI https://doi.org/10.1007/s00122-004-1748-z

    Article  CAS  PubMed  Google Scholar 

  • Portaluri V, Thomas F, Guyader S, Jamin E, Bertrand B, Remaud GS, Schievano E, Mammi S, Guercia E, Navarini L (2020) Limited genotypic and geographic variability of 16-O-methylated diterpene content in Coffea arabica green beans. Food Chem 329:127129. DOI https://doi.org/10.1016/j.foodchem.2020.127129

    Article  CAS  PubMed  Google Scholar 

  • Pot D, Ferreira LP, Rafael Dias CE, Durand N, Guyot B, Ramos J, Perthuis B, Sandrin P, Benassi MT, Marraccini P, Perreira Luiz FP, Leroy T, Vieira Luiz GE (2008) Genetic and molecular determinism of diterpenes metabolism in Coffea spp. Conference Paper CIRAD, 22nd International Conference on Coffee Science, 14–19 september 2008, Campinas, Brasil

  • Puff C, Chamchumroon V (2003) Non-indigenous Rubiaceae grown in Thailand. Thai For Bull (Bot) 31:75–94

    Google Scholar 

  • Rao TA, Bhupal OP (1973) Typology of sclereids. Proc Indian Acad Sci 41–55

  • Ren Y, Wang C, Xu J, Wang S (2019) Cafestol and Kahweol: A review on their bioactivities and pharmacological properties. Int J Mol Sci 20:4238. DOI https://doi.org/10.3390/ijms20174238

    Article  CAS  PubMed Central  Google Scholar 

  • Ricketts M-L (2007) Does coffee raise cholesterol? Future Lipidol 2:373–377. DOI https://doi.org/10.2217/17460875.2.4.373

    Article  CAS  Google Scholar 

  • Rosadi MI, Majid A, Rizal A, Ulum B, Asror K, Fu’ad M, Proyogi D, Dhani YA (2021) The Appearance of Excelsa Coffee as a Result of Exploration in Pecalukan Village, Prigen District, Pasuruan Regency. Jurnal Abdimas Berdaia 4:152–158

  • Salazar BM, Gunda DM, Lagrimas AJM, Santos PJA (2019) Profiling and Analysis of Reproductive Phenology of Four Coffee (Coffea spp.) Species in the Philippines using the BBCH Scale. Philipp J Crop Sci 44:10–19

    Google Scholar 

  • Sanchez JCS, Quilang JP, Mojica RM, Cao EP (2018) Interspecific and Intraspecific Variation in Coffea sp. using Fruit Metric and Landmark-based Geomorphometric Analyses. Philipp J Sci 147:659–665

    Google Scholar 

  • Santos DMC, Cao EP (2020) SSR Analyses of Coffea liberica var. liberica and Coffea liberica var. dewevrei in the Philippines. Philipp Agric Scientist 103:357–361

  • Seow LJ, Shamlan S, Seow EK (2021) Influence of roasting degrees on the antioxidant and anti-angiogenic effects of Coffea liberica. J Food Meas Charact 15:4030–4036. DOI https://doi.org/10.1007/s11694-021-00987-7

    Article  Google Scholar 

  • Shen T, Lee J, Lee E, Kim SH, Kim TW, Cho JY (2010) Cafestol, a coffee-Specific diterpene, is a novel extracellular signal- regulated kinase inhibitor with AP-1-Targeted inhibition of prostaglandin E2 production in lipopolysaccharide-activated macrophages. Biol Pharm Bull 33:128–132. DOI https://doi.org/10.1248/bpb.33.128

    Article  CAS  PubMed  Google Scholar 

  • Silvestrini M, Maluf MP, Silvarolla MB, Guerreiro-Filho O, Medina-Filho HP, Vanini MTM, Oliveira AS, de Gaspari-Pezzopane C, Fazuoli LC (2008) Genetic diversity of a Coffea Germplasm Collection assessed by RAPD markers. Genet Resour Crop Evol 55:901–910. DOI https://doi.org/10.1007/s10722-007-9295-5

    Article  Google Scholar 

  • Urgert R, Van der Weg G, Kosmeijer-Schuil TG, Van de Bovenkamop P, Hovenier R, Katan MB (1995) Levels of the cholesterol elevating diterpenes cafestol and kahweol in various coffee brews. J Agric Food Chem 43:2167–2172. DOI https://doi.org/10.1021/jf00056a039

    Article  CAS  Google Scholar 

  • Viani R (1988) Physiologically Active Substances in Coffee. In: Clarke RJ, Macrae R (eds) Coffee, Elsevier Applied Science, London, New York, vol. 3

  • Wrigley G (1988) Coffee. Longman Scientific & Technical, Harlow, p 639

    Google Scholar 

Download references

Acknowledgements

The authors thank the Coffea Biological Resources Center (BRC Coffea, maintened by IRD and CIRAD in Reunion Island) for providing the plant material. Special thanks to Thierry Joët.

Funding

No funds, grant, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

L.N. Conceptualization, Writing – original draft, Data curation. P.C. Conceptualization, Writing – original draft, Data curation, Methodology, Validation. E.G. Methodology, Data curation, Validation.

Corresponding author

Correspondence to Luciano Navarini.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

LEGEND OF ESM_1

A detailed list, including origin country, accession type and source of material of all samples under investigation is provided in the Online Resource 1.

LEGEND OF ESM_2

The diterpenes characterizing the unsaponifiable fraction of C. liberica lipids (cafestol, kahweol and 16-O-methylcafestol) have been quantified (mg/kg). Quantitative data described in the Results section are reported in detail in the Online Resource 2.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Vittorio Farina

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisafulli, P., Guercia, E. & Navarini, L. Discrimination of Coffea liberica and Coffea liberica var. Dewevrei: Silverskin Morphological Traits and seed Diterpenes Content. Tropical Plant Biol. 15, 247–259 (2022). https://doi.org/10.1007/s12042-022-09319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-022-09319-5

Keywords

Navigation