Skip to main content
Log in

Physical mapping of rDNA and heterochromatin in chromosomes of 16 Coffea species: A revised view of species differentiation

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The chromosome organization among 15 wild diploid Coffea species and cultivated tetraploid C. arabica was determined by fluorochrome banding (CMA, DAPI) and double fluorescence in-situ hybridization (FISH) of 5S and 18S rDNA achieved on the same chromosome plates. Two to five chromosome pairs (plus one putative chromosome B) are marked. Overall, there are two SAT-chromosome pairs for East African species and one for the Malagasy and the West and Central African species. 18S rDNA loci are telomeric and strongly marked the SAT-chromosome pairs. Generally, only one pericentromeric 5S rDNA locus characterized East African species, while an additional minor locus co-localized with the 18S rDNA-SAT locus for the Malagasy species and West and Central African species. A combination of rDNA FISH plus CMA and DAPI banding patterns enables identification of almost all the species, even those for which the genetic or botanical status is still being discussed. C. arabica clearly appears to be an allotetraploid species, including one genome from East Africa and one from West and Central Africa. However, since the minor 5S rDNA-SAT locus present in West/Central African genomes is not detected, two evolutionary hypotheses could be put forward for C. arabica. Considering only the diploid species, global trends are obvious in rDNA signal patterns, genome size variations, and geographic distribution of the species, but there are no clear evolutionary trends. However, complex interactions between these factors and environmental growing conditions exist, which have resulted in loss and gain of rDNA loci and probably also in copy repeat number variations in each rDNA family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAC:

bacterial artificial chromosome

CCD:

charge-coupled device camera

CMA:

chromomycin A3

DAPI:

4′,6 diamidino-2-phenylindole

FISH:

fluorescence in-situ hybridization

GISH:

genomic in-situ hybridization

HC:

heterochromatin

NOR:

nucleolar organizing region

SAT:

satellite chromosome with a secondary constriction

SC:

secondary constriction

References

  • Ansari HA, Ellison NW, Reader SM et al (1999) Molecular cytogenetic organization of 5S and 18S-16S rDNA loci in white clover (Trifolium repens L.) and related species. Ann Bot 83:199–206

    Article  CAS  Google Scholar 

  • Badaeva ED, Friebe B, Gills BS (1996) Genome differentiation in Aegilops. I. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306

    Article  PubMed  CAS  Google Scholar 

  • Barre P, Layssac M, D’Hont A et al (1998) Relationship between parental chromosomic contribution and nuclear DNA content in the coffee interspecific hybrid C. pseudozanguebariae × C. liberica var ‘dewevrei’. Theor Appl Genet 96:301–305

    Article  CAS  Google Scholar 

  • Berthou F, Mathieu C, Vedel F (1983) Chloroplast and mithocondrial DNA variation as indicator of phylogenetic relationships in the genus Coffea L. Theor Appl Genet 65:77–84

    Article  CAS  Google Scholar 

  • Bogunic F, Muratovic E, Siljak-Yakovlev S (2006) Chromosomal differentiation between Pinus heldreichii and Pinus nigra. Ann For Sci 63:267–274, (2006)

    Article  Google Scholar 

  • Bouharmont J (1963) Somatic chromosomes of some Coffea species. Euphytica 12:254–327

    Google Scholar 

  • Bustamante-Porras J (2007) Etude de quelques gènes codant pour les récepteurs d’éthylène chez les caféiers. PhD thesis, Ecole National Supérieure Agronomique de Montpellier, France, 126 pp

  • Bustamante-Porras J, Campa C, Poncet V et al (2007) Molecular characterisation of an ethylene receptor gene (CcETR1) in coffee trees. Its relationship with fruit development and caffeine content. Mol Gen Genet 277:701–712

    CAS  Google Scholar 

  • Cabral JS, Felix LP, Guerra M (2006) Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet Mol Biol 29–4:659–664

    Google Scholar 

  • Cai Q, Zhang D, Liu Z-L, Wang X-R (2006) Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann Bot 97:715–722

    Article  PubMed  CAS  Google Scholar 

  • Campa C, Noirot M, Bourgeois M et al (2003) Genetic mapping of a caffeoyl-CoA 3-O-methyltransferase gene in coffee trees. Impact on chlorogenic acid content. Theor Appl Genet 107:751–756

    Article  PubMed  CAS  Google Scholar 

  • Carvalho A (1952) Taxonomia de Coffea arabica L. Caracteres morfologicos dos haploides. Bragantia 12:201–212

    Google Scholar 

  • Castilho A, Heslop-Harrison JS (1994) Physical mapping of 5S and 18S-25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96

    Google Scholar 

  • Cerbah M, Coulaud J, Siljak-Yakovlev S (1998) rDNA organization and evolutionary relationships in the Hypochaeris (Asteraceae). J Hered 89:312–318

    Article  CAS  Google Scholar 

  • Charrier A, Berthaud J (1985) Botanical classification of coffee. In: Clifford MN, Wilson KC (eds) Coffee: botany, biochemistry and production of beans and beverage. Croom Helm, London, pp 13–47

    Google Scholar 

  • Chevalier A (1940) Nouveau groupement des espèces du genre Coffea et spécialement de celles de la section Eucoffea. Rev Bot Appl 18:827

    Google Scholar 

  • Chevalier A (1947) Les caféiers du globe, Fasc. III vol. 28. In: Lechevalier P (ed) Encyclopédie biologique. Paul Lechevalier, Paris

    Google Scholar 

  • Clarindo WR, Carvalho CR (2006) A high quality chromosome preparation from cell suspension aggregates culture of Coffea canephora. Cytologia 71–3:243–249

    Article  Google Scholar 

  • Clarindo WR, Carvalho CR (2008) First Coffea arabica karyogram showing that this species is a true allotetraploid. Plant Syst Evol 274:237–241

    Article  Google Scholar 

  • Comai L, Tyagi AP, Winter K et al (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:1551–1567

    Article  PubMed  CAS  Google Scholar 

  • Coulibaly I, Revol B, Noirot M et al (2003) AFLP and SSR polymorphism in a Coffea interspecific backcross progeny [(C. heterocalyx × C. canephora) × C. canephora]. Theor Appl Genet 107:1148–1155

    Article  PubMed  CAS  Google Scholar 

  • Cros J, Combes MC, Chabrillange N, Duperray C, Monnot des Angles A, Hamon S (1995) Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Can J Bot 73:14–20

    Article  Google Scholar 

  • Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosome Res 14:845–857

    Article  PubMed  CAS  Google Scholar 

  • de Moraes AP, dos Santos Soares Filho W, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chromosome Res 15:115–121

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A (2005) Unravelling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    Article  PubMed  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann J-C (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • Frello S, Heslop-Harrison JS (2000) Chromosomal variation in Crocus vernus Hill (Iridaceae) investigated by in-situ hybridization of rDNA and a tandemly repeated sequence. Ann Bot 86:317–322

    Article  CAS  Google Scholar 

  • Galbraith D, Harkins K, Maddox J, Ayres N, Sharma D, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Geber G, Schweizer D (1987) Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air-drying technique for producing chromosome spreads. Plant Syst Evol 158:97–106

    Article  Google Scholar 

  • Hanson RE, Islam-Faridi MN, Percival EA et al (1996) Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105:55–61

    Article  PubMed  CAS  Google Scholar 

  • Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490

    Article  CAS  Google Scholar 

  • Heslop-Harrison JS (2000) Comparative genome organization in plants: from sequences and markers to chromatin and chromosomes. Plant Cell 12:617–635

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jonssun T, Leith A, Shi M, Leitch IJ (1991) In-situ hybridization with automated chromosome denaturation. Technique 3:109–115

    Google Scholar 

  • Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105:491–497

    Article  PubMed  Google Scholar 

  • Kiehn M (1995) Chromosome survey of the Rubiaceae. Ann Mo Bot Gard 82:398–408

    Article  Google Scholar 

  • Krishnan P, Sapra VT, Siman KM, Zipf A (2001) FISH mapping of the 5S and 18S-28S r DNA loci in different species of Glycine. J Hered 92(3):295–300

    Article  PubMed  CAS  Google Scholar 

  • Ky C, Barre P, Lorieux M et al (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676

    Article  CAS  Google Scholar 

  • Lavania UC, Basu S, Srivastava, S Mukai Y, Lavania S (2005) In situ chromosomal localization of rDNA sites in ‘safed musli’ Chlorophytum Ker-Gawl and their physical measurement by fiber FISH. J Hered 96(2):155–160

    Article  PubMed  CAS  Google Scholar 

  • Lebrun J (1941) Recherches morphologiques et systématiques sur les caféiers du Congo. Publ Inst Natl Étud Agron Congo Belge 11:1–186

    Google Scholar 

  • Leitch AR, Heslop-Harrison JS (1992) Physical mapping of the 18S-5.8s-26s rRNA genes in barley by in-situ hybridization. Genome 35:1013–1018

    CAS  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of 4 sites of 5S rDNA sequences and one site of the alpha-amylase-2 gene in barley (Hordeum vulgare). Genome 36:517–523

    Article  PubMed  CAS  Google Scholar 

  • Leroy JF (1980) Evolution et taxogénèse chez les caféiers: hypothèse sur l’origine. CR Acad Sci France 291:593–596

    Google Scholar 

  • Liu Z-L, Zhang D, Wang X-Q, Ma X-F, Wang X-R (2003) Intragenomic and interspecific 5S rDNA sequence variation in five asian pines. Am J Bot 90(1):17–24

    Article  CAS  Google Scholar 

  • Louarn J (1992) La fertilité des hybrides interspécifiques et les relations génomiques entre les caféiers diploïdes d’origine africaine (genre Coffea L. s.g. Coffea). PhD thesis, Université Paris XI, centre d’Orsay, France

  • Mahesh V, Rakotomalala JJ, Le Gal L et al (2006) Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids. Plant Cell Rep 25:986–992

    Article  PubMed  CAS  Google Scholar 

  • Maluszynska J, Heslop-Harrison P (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781

    Article  PubMed  CAS  Google Scholar 

  • Mantovani M, dos Santos Abel LD, Mestriner CA, Moreira-Filho O (2004) Evidence of the differentiated structural arrangement of constitutive heterochromatin between two populations of Astyanax scabripinnis (Pisces, Characidae). Genet Mol Bio 27– 4:536–542

    Google Scholar 

  • Maurin O, Davis AP, Chester M, Mvungi EF, Jaufeerally-Fakim Y, Fay MF (2007) Towards a phylogeny for Coffea (Rubiaceae): identifying well-supported lineages based on nuclear and plastid DNA sequences. Ann Bot 100:1–19

    Article  Google Scholar 

  • Mishima M, Ohmido N, Fukai K, Yahara T (2002) Trends in site number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 110:550–558

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Heslop-Harrison JS, Motoyoshi F (1997) Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multicolor fluorescence in-situ hybridization in cosmid clones. Plant J 12:31–37

    Article  PubMed  CAS  Google Scholar 

  • Muratovic E, Bogunic F, Soljan D, Siljak-Yakovlev S (2005) Does Lilium bosniacum merit species rank? A classical and molecular cytogenetic approaches. Plant Syst Evol 252:97–109

    Article  CAS  Google Scholar 

  • N’Diaye A, Poncet V, Louarn J, Hamon S, Noirot M (2005) Genetic differentiation between Coffea liberica var. liberica and C. liberica var. Dewevrei and comparison with C. canephora. Plant Syst Evol 253:95–104

    Article  Google Scholar 

  • N’Diaye A, Noirot M, Hamon S, Poncet V (2007) Genetic basis of species differentiation between Coffea liberica Hiern and C. canephora Pierre: analysis of an interspecific cross. Genet Res Crop Evol 54:1011–1021

    Article  Google Scholar 

  • Noirot M, Poncet V, Barre P, Hamon P, Hamon S, de Kochko A (2003) Genome size variations in diploid African Coffea species. Ann Bot 92:709–714

    Article  PubMed  CAS  Google Scholar 

  • Pinto-Maglio CAF (2006) Cytogenetics of coffee. Braz J Plant Physiol 18(1):37–44

    Article  CAS  Google Scholar 

  • Poncet V, Hamon P, Minier J, Carasco C, Hamon S, Noirot M (2004) SSR cross-amplification and variation within coffee trees Coffea sp. Genome 47:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Poncet V, Rondeau M, Tranchant C et al (2006) SSR mining in coffee tree databases. Potential use of EST-SSRs as markers for Coffea genus. Mol Genet Genomics 276:436–449

    Article  PubMed  CAS  Google Scholar 

  • Poncet V, Dufour M, Hamon P, Hamon S, de Kochko A, Leroy T (2007) Development of genomic microsatellite markers on C. canephora and their transferability to other coffee species. Genome 50:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Raina SN, Mukai Y (1999) Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59

    Article  CAS  Google Scholar 

  • Raina SN, Mukai Y, Yamamoto M (1998) In situ hybridization identifies the diploid progenitor species of Coffea arabica (Rubiaceae). Theor Appl Genet 97:1204–1209

    Article  Google Scholar 

  • Ricroch A, Peffley EB, Baker RJ (1992) Chromosomal location of rDNA in Allium: in-situ hybridization using a biotin- and fluorescein- labelled probe. Theor Appl Genet 88:413–418

    Google Scholar 

  • Ruas CF, Vanzela ALL, Santos MO et al (2005) Chromosomal organization and phylogenetic relationships in Hypochaeris species (Asteraceae) from Brazil. Genet Mol Biol 28:129–139

    Article  CAS  Google Scholar 

  • Schmid M, Guttenbach M (1988) Evolutionary diversity of reverse fluorescence chromosome bands in vertebrates. Chromosoma 97:101–114

    Article  PubMed  CAS  Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomicin and DAPI. Chromosoma 58:307–324

    Article  PubMed  CAS  Google Scholar 

  • Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. Chromosomes Today 9:61–74

    Google Scholar 

  • Siljak-Yakovlev S, Peccenini S, Muratovic E, Zoldos V, Robin O, Vallès J (2003) Chromosomal differentiation and genome size in three European mountain Lilium species. Plant Syst Evol 236:165–173

    Article  CAS  Google Scholar 

  • Snowdon RJ (2007) Cytogenetics and genome analysis in Brassica crops. Chromosome Res 15:85–95

    Article  PubMed  CAS  Google Scholar 

  • Sola L, Rossi AR, Iaselli V et al (1992) Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana by C-banding and DAPI, quinacrine, chromomycin A3 and silver staining. Cytogenet Cell Genet 60:229–235

    Article  PubMed  CAS  Google Scholar 

  • Srisuwan S, Sihachakr D, Siljak-Yakovlev S (2006) The origin and evolution of sweet potato (Ipomea batatas Lam.) and its wild relatives through the cytogenetic approaches. Plant Sci 171:424–433

    Article  CAS  Google Scholar 

  • Taketa S, Harrison GE, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98:1–9

    Article  CAS  Google Scholar 

  • Zoldos V, Papes D, Cerbah M, Panaud O, Besendorfer V, Siljak-Yakovlev S (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99:969–977

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Institut de Recherche pour le Développement (IRD, action incitative RubiComp) and the Centre National de Recherche Scientifique (CNRS). The authors thank Dr Spencer C. Brown from the Institut des Sciences du Végétal (CNRS, Gif-sur-Yvette, France) for his expert assistance in flow cytometry on the IFR87 Platform. We are most grateful to Pat Heslop-Harrison and the anonymous reviewers for their valuable comments and useful suggestions on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hamon.

Additional information

Responsible Editor: Pat Heslop-Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamon, P., Siljak-Yakovlev, S., Srisuwan, S. et al. Physical mapping of rDNA and heterochromatin in chromosomes of 16 Coffea species: A revised view of species differentiation. Chromosome Res 17, 291–304 (2009). https://doi.org/10.1007/s10577-009-9033-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9033-2

Keywords

Navigation