Skip to main content
Log in

Assessment of genetic diversity and relationships among Salvia species using gene targeted CAAT box-derived polymorphism markers

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

To detect the genetic variation and relationships among different Salvia ecotypes/species, the gene targeted CAAT box-derived polymorphism (CBDP) markers were employed in terms of their efficiency. In this study, 25 CBDP primers amplified a total of 323 different polymorphic fragments that discriminate all 26 Salvia ecotypes/species and produced an informative and differentiated dendrogram and population structure. The CBDP markers were found to be effective in Salvia genetic diversity estimation with regard to the averages polymorphism (100%), polymorphism information content (\(\hbox {PIC}=0.89\)), marker index (\(\hbox {MI}=4.5\)) and the effective multiplex ratio (\(\hbox {EMR}=5.01\)) which were higher than other reported markers on Salvia. The extent of heterozygosity (\(0.034{\le }H{\le }0.223\)) and Shannon index (\(0.042{\le }I{\le }0.278\)) indicated a high level of genetic variation among Salvia species. The species containing the highest basic chromosome number (\(\hbox {X}=12\)) revealed the highest values for the number of different (\(N_{\mathrm{a}}\)) and effective (\(N_{\mathrm{e}}\)) alleles, Shannon index (I), and heterozygosity (H). Additionally, the tetraploid species showed high values of \(N_{\mathrm{a}}\), \(N_{\mathrm{e}}\), I and H compared to the diploid species. Mean of gene differentiation (\(G_{\mathrm{st}}\)) among Salvia species was 0.792, and the estimation of gene flow (\(N_{\mathrm{m}}\)) was 0.13, indicating high genetic differentiation. Remarkably, similar results were obtained from the principal co-ordinate analysis (PCoA) as compared with the cluster analysis, in which all different Salvia species formed individual groups. In conclusion, because the CBDP markers are derived from the gene containing regions of the genome, consequently, the high genetic diversity among studied Salvia species would be more useful for crop improvement programmes, such as hybridization between species and QTL mapping. The potential of CBDPs for analysing the phylogeny and genetic diversity of Salvia species is another key result with practical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benoist C., Ohare K., Breathnach R. and Chambon P. 1980 The ovalbumin gene sequence of putative control regions. Nucleic Acids Res. 8, 127–142.

    Article  CAS  Google Scholar 

  • Bohn M., Utz H. F. and Melchinger A. E. 1999 Genetic similarities among wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci. 39, 228–237.

    Article  CAS  Google Scholar 

  • Collard B. C. Y. and Mackill D. J. 2009 Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 27, 86–93.

    Article  CAS  Google Scholar 

  • Dje Y., Hevretz M., Letebure C. and Vekemans X. 2000 Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor. Appl. Genet. 100, 918–925.

    Article  CAS  Google Scholar 

  • Etminan A., Pour-Aboughadareh A. and Nooric A. 2018 Genetic relationships and diversity among wild Salvia accessions revealed by ISSR and SCoT markers. Biotechnol. Biotechnol. Equip. 32, 610–617

    Article  Google Scholar 

  • Fan H. Y., Fu F. H., Yang M. Y., Xu H., Zhang A. H. and Liu R. 2010 Antiplatelet and antithrombotic activities of Salvia nolic acid. Thromb. Res. 126, 17–22.

    Article  Google Scholar 

  • Gorji A. M., Poczai P. and Polgar Z. 2011 Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am. Potato J. 88, 226–237.

    Article  Google Scholar 

  • Gupta P. K. and Roy J. K. 2002 Molecular markers in crop improvement: present status and future needs in India. Plant Cell Tissue Organ Cult. 70, 229–234.

    Article  Google Scholar 

  • Harley R. M., Atkins S., Budantsev A. L., Cantino P. D., Conn B. J., Grayer R. et al. 2004 Labiatae. In The families and genera of vascular plant (ed. J.W. Kadereit and K. Kubitzki), vol. 7, pp. 167–236. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Heidari P., Etminan A., Azizinezhad R. and Khosroshahli M. 2017 Genomic variation studies in durum wheat (Triticum turgidum ssp. durum) using CBDP, SCoT and ISSR markers. Indian J. Genet. Plant Breed. 77, 379–386.

    Article  Google Scholar 

  • Heikrujam M., Kumar J. and Agrawal V. 2015 Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers. Meta Gene 5, 90–97.

    Article  Google Scholar 

  • Hosseinzadeh H., Haddakhodaparast M. H. and Arash A. R. 2003 Antinociceptive, antiinflammatory and acute toxicity effects of Salvia leriifolia Benth. seed extract in mice and rats. Phytother. Res. 17, 422–425.

    Article  Google Scholar 

  • Hu J. and Vick B. A. 2003 Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol. Biol. Rep. 21, 289–294.

    Article  CAS  Google Scholar 

  • Hubisz M. J., Falush D., Stephens M. and Pritchard J. K. 2009 Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Res. 9, 1322–1332.

    Article  Google Scholar 

  • Li G. and Quiros C. F. 2001 Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461.

    Article  CAS  Google Scholar 

  • Mayer B., Baggio C. H., Freitas C. S., Santos C., Twardowschy A., Horst H. et al. 2007 Gastro protective constituents of Salvia officinalis L. Fitoterapia 80, 421–426.

    Article  Google Scholar 

  • Moose S. P. and Mumm R. H. 2008 Molecular plant breeding as the foundation for 21st Century crop improvement. Plant Physiol. 147, 969–977.

    Article  CAS  Google Scholar 

  • Paliwal R., Singh R., Singh A. K., Kumar S., Kumar A. and Majumdar R. S. 2013 Molecular characterization of Giloe (Tinospora cordifolia) accessions using start codon targeted (SCoT) markers. Int. J. Med. Aromat. Plants 3, 413–422.

    Google Scholar 

  • Pang M., Percy R. G., Ed H. and Zhang J. 2009 Promoter anchored amplified polymorphism based on random amplified polymorphic DNA (PAAP-RAPD) in cotton. Euphytica 167, 281–291.

    Article  Google Scholar 

  • Poczai P., Varga I. and Laos M. 2013 Advances in plant gene-targeted and functional markers: a review. Plant Methods 9, 6–37.

    Article  CAS  Google Scholar 

  • Pour-Aboughadareh A., Ahmadi J., Mehrabi A., Etminan A. and Moghaddam M. 2017 Assessment of genetic diversity among Iranian Triticum germplasm using agro-morphological traits and start codon targeted (SCoT) markers. Cereal Res. Commun. 45, 574–586.

    Article  Google Scholar 

  • Pour-Aboughadareh A., Ahmadi J., Mehrabi A., Etminan A. and Moghaddam M. 2018 Insight into the genetic variability analysis and relationships among some Aegilops and Triticum species, as genome progenitors of bread wheat, using SCoT markers. Plant Biosys. For. 152, 694–703.

    Article  Google Scholar 

  • Powell W., Morgante M., Doyle J. J., McNicol J. W., Tingey S. V. and Rafalski A. J. 1996 Gene pool variation in genus Glycine subgenus Soja revealed by polymorphic nuclear and chloroplast microsatellites. Genetics 144, 793–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Que Y., Pan Y., Lu Y., Yang C., Yang Y., Huang N. et al. 2014 Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism. Biomed Res. Int. 2014, 1–10.

    Article  Google Scholar 

  • Rajesh M. K., Sabana A. A. and Rachana K. E. 2015 Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis. 3 Bitech 5, 999–1006.

    Article  CAS  Google Scholar 

  • Randi E. and Lucchini V. 2002 Detecting rare introgression of domestic dog genes into wild wolf (Canis lupus) populations by Bayesian admixture analyses of microsatellite variation. Conserv. Genetics 3, 29–43.

    Article  Google Scholar 

  • Rohlf F. 2000 NTSYS-PC numerical taxonomy and multivariate analysis system, ver 2.11L. Applied Biostatistics, New York.

  • Safaei M., Sheidai M., Alijanpoor B. and Noormohammadi Z. 2016 Species delimitation and genetic diversity analysis in Salvia with the use of ISSR molecular markers. Acta Bot. Croa. 75, 42–52.

    Google Scholar 

  • Javan Z. S., Rahmani F. and Heidari R. 2012 Assessment of genetic variation of genus Salvia by RAPD and ISSR markers. Aust. J. Crop Sci. 6, 1068–1073.

    CAS  Google Scholar 

  • Shahmuradov I. A., Gammerman A. J., Hancock J. M., Bramley P. M. and Solovyev V. V. 2003 Plant Prom: a database of plant promoter sequences. Nucleic Acids Res. 31, 114–117.

    Article  CAS  Google Scholar 

  • Singh A. K., Rana M. K., Singh S., Kumar S., Kumar R. and Singh R. 2014 CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. J. Plant Biochem. Biotech. 23, 175–183.

    Article  CAS  Google Scholar 

  • Sivaprakash K. R., Prasanth S. R., Mohanty B. P. and Parida A. 2004 Genetic diversity of black gram landraces as evaluated by AFLP markers. Curr. Sci. 86, 1411–1415.

    Google Scholar 

  • Song Z., Li X., Wang H. and Wang J. 2010 Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP. Genetica 138, 241–249.

    Article  CAS  Google Scholar 

  • Souframanien J. and Gopalakrishna T. 2004 A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor. Appl. Genet. 109, 1687–1693.

    Article  CAS  Google Scholar 

  • Tams S. H., Melchinger A. E. and Bauer E. 2005 Genetic similarity among European winter triticale elite germplasms assessed with AFLP and comparisons with SSR and pedigree data. Plant Breed. 124, 154–160.

    Article  CAS  Google Scholar 

  • Tiwari G., Singh R., Singh N., Choudhury D., Paliwal R., Kumar A. et al. 2016 Study of arbitrarily amplified (RAPD and ISSR) and gene targeted (SCoT and CBDP) markers for genetic diversity and population structure in Kalmegh (Andrographis paniculata Nees). Ind. Crops Prod. 86, 1–11.

    Article  CAS  Google Scholar 

  • Ude G., Pillay M. and Ogundiwin E. 2003 Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor. Appl. Genet. 107, 248–255.

    Article  CAS  Google Scholar 

  • Walker J. B., Sytsma K. J., Treutlelin J. and Wink M. 2004 Salvia (Lamiaceae) is not monophyletic: implication for the systematics, radiation, and ecological specialization of Salvia and Tribe Mentheae. Am. J. Bot. 91, 1115–1125.

    Article  Google Scholar 

  • Wang B., Zhang Y., Chen C. B., Li X. L., Chen R. Y. and Chen L. 2007 Analysis on genetic diversity of different Salvia miltiorrhiza geographical populations in China. Chin. Med. J. 32, 1988–1991.

    Google Scholar 

  • Wang O., Zhang B. and Lu L. 2009 Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Mol. Biol. Rep. 27, 139–143.

    Article  CAS  Google Scholar 

  • Yeh F. C., Yang R. C. and Boyle T. 1999 POPGENE 32-version 1.31. Population Genetics Software. http://www.ualberta.ca/~fyeh/fyeh/.

  • Yousefiazar-Khanian M., Asghari A. and Ahmadi J. 2016 Genetic diversity of Salvia species assessed by ISSR and RAPD markers. Not. Bot. Horti. Agrobo. 44, 431–436.

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the Genetics and Genomics Laboratory at Imam Khomeini International University for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedigheh Fabriki-Ourang.

Additional information

Corresponding Editor: Manoj Prasad

Experimental design, S. Fabriki-Ourang; laboratory work, H. Karimi; statistical data analysis, H. Karimi; interpretation of results, writing the manuscript and critical revision: S. Fabriki-Ourang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabriki-Ourang, S., Karimi, H. Assessment of genetic diversity and relationships among Salvia species using gene targeted CAAT box-derived polymorphism markers. J Genet 98, 75 (2019). https://doi.org/10.1007/s12041-019-1121-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1121-2

Keywords

Navigation