Skip to main content
Log in

Promoter anchored amplified polymorphism based on random amplified polymorphic DNA (PAAP-RAPD) in cotton

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Non-coding sequences account for a majority of the higher plant genome, some of which have important effects in gene regulation and plant development. In an effort to develop molecular marker systems to search for polymorphisms associated with high fiber yield and quality in cotton, we have developed a methodology that could specifically target the regulatory regions of the cotton genome. In this study we designed 10-nucleotide degenerate promoter primers based on conserved core promoter sequences and tested their applicability in PCR amplifications in combination with 10-mer random amplified polymorphic DNA (RAPD) primers. The amplified markers are called promoter anchored amplified polymorphism based on RAPD (PAAP-RAPD). Forty cotton genotypes with diverse genetic and geographical backgrounds were used to test the PAAP-RAPD system using polyacrylamide gel electrophoresis. Based on PAAP-RAPD markers amplified from 12 primer combinations, the 40 genotypes were classified into five distinctive groups: two Upland cotton (Gossypium hirsutum) groups from China, another two Upland cotton groups from the USA, and one group from American Pima cotton (G. barbadense). The groupings are in general consistent with their genetic and geographical origins. Thirty-six PAAP-RAPD and RAPD fragments were cloned and four of them were further subjected to sequence analysis. Signal scanning using software PLACE confirmed that they contained an array of cis-regulatory sequences in addition to the core promoter sequences. The results demonstrate the potential application of PAAP-RAPD as a new marker system specifically targeting regulatory regions of the plant genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Botstein DRLW, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Butler JEF, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592. doi:10.1101/gad.1026202

    Article  PubMed  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500. doi:10.1093/nar/gkg500

    Article  PubMed  CAS  Google Scholar 

  • Dieterich C, Wang H, Rateitschak K, Luz H, Vingron M (2003) CORG: a database for comparative regulatory genomics. Nucleic Acids Res 31:55–57. doi:10.1093/nar/gkg007

    Article  PubMed  CAS  Google Scholar 

  • Dietrich W, Katz H, Lincoln SE, Shin HS, Friedman J, Dracopoli NL, Lander ES (1992) A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131:423–447

    PubMed  CAS  Google Scholar 

  • Hamada H, Petrino MG, Kakunaga T (1982) A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA 79:6465–6469. doi:10.1073/pnas.79.21.6465

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300. doi:10.1093/nar/27.1.297

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294. doi:10.1007/BF02772804

    Article  CAS  Google Scholar 

  • Jakoby M, Schnittger A (2004) Cell cycle and differentiation. Curr Opin Plant Biol 7:661–669. doi:10.1016/j.pbi.2004.09.015

    Article  PubMed  CAS  Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390. doi:10.1023/A:1009612517139

    Article  CAS  Google Scholar 

  • Kreiman G (2004) Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes. Nucleic Acids Res 32:2889–2900. doi:10.1093/nar/gkh614

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) Plant CARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. doi:10.1093/nar/30.1.325

    Article  PubMed  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461. doi:10.1007/s001220100570

    Article  CAS  Google Scholar 

  • Perez T, Albornoz J, Dominguez A (1998) An evaluation of RAPD fragment reproducibility and nature. Mol Ecol 7:1347–1357. doi:10.1046/j.1365-294x.1998.00484.x

    Article  PubMed  CAS  Google Scholar 

  • Pohar TT, Sun H, Davuluri RV (2004) HemoPDB: Hematopoiesis Promoter Database, an information resource of transcriptional regulation in blood cell development. Nucleic Acids Res 32:D86–D90. doi:10.1093/nar/gkh056

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304. doi:10.1016/j.tplants.2005.04.008

    Article  PubMed  CAS  Google Scholar 

  • Schmid CD, Praz V, Delorenzi M, Perier R, Bucher P (2004) The eukaryotic promoter database EPD: the impact of in silico primer extension. Nucleic Acids Res 32:D82–D85. doi:10.1093/nar/gkh122

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Carninci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145. doi:10.1126/science.1071006

    Article  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Tvd Lee, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  PubMed  CAS  Google Scholar 

  • Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants: principles, methods, and applications. 2nd edn. CRC Press

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218. doi:10.1093/nar/18.24.7213

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. doi:10.1093/nar/18.22.6531

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfa Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, M., Percy, R.G., Hughs, E. et al. Promoter anchored amplified polymorphism based on random amplified polymorphic DNA (PAAP-RAPD) in cotton. Euphytica 167, 281–291 (2009). https://doi.org/10.1007/s10681-008-9850-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9850-y

Keywords

Navigation