Skip to main content
Log in

Molecular characterization and expression pattern analysis of a novel stress-responsive gene ‘BeSNAC1’ in Bambusa emeiensis

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

NAC transcription factors (TFs) are master regulators of environmental stresses exerting a crucial role in plant growth and development. However, the studies on NAC TFs from Bambusa emeiensis are scarce. In this investigation, a novel gene from B. emeiensis encoding NAC protein was cloned and characterized. The gene was isolated based on the amino acid sequence data of stress-responsive SNAC1 of rice, named ‘BeSNAC1 (accession no. MG763922)’. The full-length sequence of 1681 bp was found to contain an open-reading frame of 912 bp that encode a protein of 303 amino-acid residues. The multiple protein sequence alignments unveiled that BeSNAC1 contains a typical NAC domain. Additionally, the phylogenetic analysis showed that the corresponding protein belonged to the SNAC group, as it cladded with SNAC1, HvSNAC1, TaNAC2, SbSNAC1 and ZmSNAC1 proteins. Transactivation and subcellular localization assay disclosed that BeSNAC1 is a transcriptional activator localized in the cell nucleus. Moreover, the time-dependent expression pattern of BeSNAC1 was profiled under abscisic acid (ABA), polyethylene glycol 6000 (PEG-6000), NaCl, \(\hbox {H}_{2}\hbox {O}_{2}\) and \(\hbox {Na}_{2}\hbox {SO}_{4}\) treatments via a quantitative real-time polymerase chain reaction. The results revealed that the expression of BeSNAC1 was significantly upregulated in all treatments, a significant difference was observed under \(\hbox {H}_{2}\hbox {O}_{2}\), NaCl and ABA (\(P < 0.001\)) and PEG and \(\hbox {Na}_{2}\hbox {SO}_{4}\) (\(P < 0.01\)) treatments, respectively. Conclusively, our findings provide evidence that ‘BeSNAC1’ is a nuclear protein that might act as part of the transcription regulation complex and is involved in the ABA signalling pathway and abiotic stress tolerance mechanisms in B. emeiensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aida M. 1997 Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841–857.

    Article  CAS  Google Scholar 

  • Al Abdallat A. M., Ayad J. Y., Abu Elenein J. M., Al Ajlouni Z. and Harwood W. A. 2014 Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Mol. Breed. 33, 401–414.

  • An X., Liao Y., Zhang J., Dai L., Zhang N., Wang B. et al. 2015 Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regul. 76, 211–223.

    Article  CAS  Google Scholar 

  • Cenci A., Guignon V., Roux N. and Rouard M. 2014 Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol. Biol. 85, 63–80.

    Article  CAS  Google Scholar 

  • Chen Y., Qiu K., Kuai B. and Ding Y. 2011 Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (B. emeiensis ‘Viridiflavus’). Physiol. Plant 142, 361–371.

    Article  CAS  Google Scholar 

  • Cramer G. R., Urano K., Delrot S., Pezzotti M. and Shinozaki K. 2011 Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 11, 163.

    Article  Google Scholar 

  • Duval M., Hsieh T. F., Kim S. Y. and Thomas T. L. 2002 Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50, 237–248.

    Article  CAS  Google Scholar 

  • Fang Y., You J., Xie K., Xie W. and Xiong L. 2008 Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol. Genet. Genomics 280, 547–563.

    Article  CAS  Google Scholar 

  • Goyal A. K., Ghosh P. K., Dubey A. K. and Sen A. 2012 Inventorying bamboo biodiversity of North Bengal : a case study. Int. J. Fund. Appl. Sci. 1, 7–10.

    Google Scholar 

  • He X. J., Mu R. L., Cao W. H., Zhang Z. G., Zhang J. S. and Chen S. Y. 2005 AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44, 903–916.

    Article  CAS  Google Scholar 

  • Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q. et al. 2006 Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 103, 12987–12992.

    Article  CAS  Google Scholar 

  • Hu H., You J., Fang Y., Zhu X., Qi Z. and Xiong L. 2008 Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Biol. 67, 169–181.

    Article  CAS  Google Scholar 

  • Huang Q., Wang Y., Li B., Chang J., Chen M., Li K. et al. 2015 TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol. 15, 268.

    Article  Google Scholar 

  • Jeong J. S., Kim Y. S., Baek K. H., Jung H., Ha S. H., Do Choi Y. et al. 2010 Root-Specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153, 185–197.

    Article  CAS  Google Scholar 

  • Jeong J. S., Kim Y. S., Redillas M. C. F. R., Jang G., Jung H., Bang S. W. et al. 2013 OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol. J. 11, 101–114.

    Article  CAS  Google Scholar 

  • Kikuchi K., Ueguchi-Tanaka M., Yoshida K. T., Nagato Y., Matsusoka M. and Hirano H. Y. 2000 Molecular analysis of the NAC gene family in rice. Mol. Gen. Genet. 262, 1047–1051.

    Article  CAS  Google Scholar 

  • Kumar S., Stecher G. and Tamura K. 2016 MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  Google Scholar 

  • Lata C., Muthamilarasan M. and Prasad M. 2015 Elucidation of abiotic stress signaling in plants. (ed. G. K. Pandey), pp. 195–225, vol. 2. Springer.

  • Lee D. K., Chung P. J., Jeong J. S., Jang G., Bang S. W., Jung H. et al. 2017 The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol. J. 15, 754–764.

    Article  CAS  Google Scholar 

  • Liu G., Li X., Jin S., Liu X., Zhu L., Nie Y. et al. 2014 Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9, e86895.

    Article  Google Scholar 

  • Livak K. J. and Schmittgen T. D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2-\({}^{\Delta \Delta \text{ CT }}\) method. Methods 25, 402–408.

    Google Scholar 

  • Lu M., Ying S., Zhang D. F., Shi Y. S., Song Y. C., Wang T. Y. et al. 2012 A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep. 31, 1701–1711.

    Article  CAS  Google Scholar 

  • Lu M., Zhang D. F., Shi Y. S., Song Y. C., Wang T. Y. and Li Y. 2013 Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis. Plant Cell Tissue Organ Cult. 115, 443–455.

    Article  CAS  Google Scholar 

  • Ma N. N., Zuo Y. Q., Liang X. Q., Yin B., Wang G. D. and Meng Q. W. 2013 The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiol. Plant 149, 474–486.

    Article  CAS  Google Scholar 

  • Mao X., Zhang H., Qian X., Li A., Zhao G. and Jing R. 2012 TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J. Exp. Bot. 63, 2933–2946.

    Article  CAS  Google Scholar 

  • Mao X., Chen S., Li A., Zhai C. and Jing R. 2014 Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9, e84359.

    Article  Google Scholar 

  • Nakashima K., Tran L. S. P., Van Nguyen D., Fujita M., Maruyama K., Todaka D. et al. 2007 Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51, 617–630.

    Article  CAS  Google Scholar 

  • Nakashima K., Takasaki H., Mizoi J., Shinozaki K. and Yamaguchi-Shinozaki K. 2012 NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta. 1819, 97–103.

    Article  CAS  Google Scholar 

  • Nuruzzaman M., Manimekalai R., Sharoni A. M., Satoh K., Kondoh H., Ooka H. et al. 2010 Genome-wide analysis of NAC transcription factor family in rice. Gene 465, 30–44.

    Article  CAS  Google Scholar 

  • Nuruzzaman M., Sharoni A. M. and Kikuchi S. 2013 Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 4, 248.

    Article  Google Scholar 

  • Olsen A. N., Ernst H. A., Leggio L. L. and Skriver K. 2005 DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci. 169, 785–797.

    Article  CAS  Google Scholar 

  • Ooka H., Satoh K., Doi K., Nagata T., Otomo Y., Murakami K. et al. 2003 Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10, 239–247.

    Article  CAS  Google Scholar 

  • Puranik S., Sahu P. P., Srinivastava P. S. and Prasad M. 2012 NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 17, 369–381.

  • Redillas M. C. F. R., Jeong J. S., Kim Y. S., Jung H., Bang S. W., Choi Y. D. et al. 2012 The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol. J. 10, 792–805.

    Article  CAS  Google Scholar 

  • Saad A. S. I., Li X., Li H. P., Huang T., Gao C. S., Guo M. W. et al. 2013 A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci. 203, 33–40.

    Article  Google Scholar 

  • Sablowski R. W. M. and Meyerowitz E. M. 1998 A homolog of no apical meristem is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92, 93–103.

    Article  CAS  Google Scholar 

  • Shen J., Lv B., Luo L., He J., Mao C., Xi D. et al. 2017 The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci. Rep. 7, 40641.

    Article  CAS  Google Scholar 

  • Singh D. and Laxmi A. 2015 Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci. 6, 1–11.

    CAS  Google Scholar 

  • Souer E., Van Houwelingen A., Kloos D., Mol J. and Koes R. 1996 The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85, 159–170.

    Article  CAS  Google Scholar 

  • Takasaki H., Maruyama K., Kidokoro S., Ito Y., Fujita Y., Shinozaki K. et al. 2010 The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol. Genet. Genomics 284, 173–183.

    Article  CAS  Google Scholar 

  • Tang Y., Liu M., Gao S., Zhang Z., Zhao X., Zhao C. et al. 2012 Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol. Plant 144, 210–224.

    Article  CAS  Google Scholar 

  • Wang C., Deng P., Chen L., Wang X., Ma H., Hu W. et al. 2013 A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8, e65120.

  • Wang X., Zeng J., Li Y., Rong X., Sun J., Sun T. et al. 2015 Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci. 6, 1–14.

    Google Scholar 

  • Wu A., Allu A. D., Garapati P., Siddiqui H., Dortay H., Zanor M.-I. et al. 2012 JUNGBRUNNEN1, a reactive oxygen Species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24, 482–506.

    Article  CAS  Google Scholar 

  • Wu Y., Deng Z., Lai J., Zhang Y., Yang C., Yin B. et al. 2009 Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 19, 1279.

    Article  CAS  Google Scholar 

  • Xie Q., Frugis G., Colgan D. and Chua N. H. 2000 Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024–3036.

    Article  CAS  Google Scholar 

  • Xu Z., Wang C., Xue F., Zhang H. and Ji W. 2015 Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiol. Biochem. 96, 356–363.

    Article  CAS  Google Scholar 

  • Xue G. P., Way H. M., Richardson T., Drenth J., Joyce P. A. and McIntyre C. L. 2011 Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol. Plant 4, 697–712.

    Article  CAS  Google Scholar 

  • Yang S.-D., Seo P. J., Yoon H.-K. and Park C.-M. 2011 The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23, 2155–2168.

    Article  CAS  Google Scholar 

  • Yeasmin L., Ali M. N., Gantait S. and Chakraborty S. 2015 Bamboo: an overview on its genetic diversity and characterization. 3 Biotech. 5, 1–11.

    Article  Google Scholar 

  • Yokotani N., Ichikawa T., Kondou Y., Matsui M., Hirochika H., Iwabuchi M. et al. 2009 Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229, 1065–1075.

    Article  CAS  Google Scholar 

  • Zhang L. L., Zhang L. L., Xia C., Zhao G., Jia J. and Kong X. 2016 The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Sci. 6, 1174.

    PubMed  PubMed Central  Google Scholar 

  • Zheng X., Chen B., Lu G. and Han B. 2009 Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem. Biophys. Res. Commun. 379, 985–989.

    Article  CAS  Google Scholar 

  • Zhong R., Demura T. and Ye Z.-H. 2006 SND1, a NAC domain transcription factor, Is a Key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18, 3158–3170.

    Article  CAS  Google Scholar 

  • Zhong R., Richardson E. A. and Ye Z. H. 2007 Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225, 1603–1611.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Department of  Science and Technology,  Sichuan Province, China, project nos. 2016NYZ0038 and 2017NZ0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Shanglian.

Additional information

Corresponding editor: Manoj Prasad

HS, conceptualization; NS and MI, investigation; HS, LX and YC, resources; SN and MI, writing and original draft preparation; SN, MI, HS, LX, YC and HY writing, review and editing; HS, supervision; HS and LX, project administration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samo, N., Imran, M., Shanglian, H. et al. Molecular characterization and expression pattern analysis of a novel stress-responsive gene ‘BeSNAC1’ in Bambusa emeiensis. J Genet 98, 52 (2019). https://doi.org/10.1007/s12041-019-1098-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1098-x

Keywords

Navigation