Skip to main content
Log in

Comparative mapping of quantitative trait loci for tassel-related traits of maize in \(\hbox {F}_{2:3}\) and RIL populations

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Tassel architecture is an important trait in maize breeding and hybrid seed production. In this study, we investigated total tassel length (TTL) and tassel branch number (TBN) in 266 \(\hbox {F}_{2:3}\) families across six environments and in 301 recombinant inbred lines (RILs) across three environments, where all the plants were derived from a cross between 08-641 and Ye478. We compared the genetic architecture of the two traits across two generations through combined analysis. In total, 27 quantitative trait loci (QTLs) (15 in \(\hbox {F}_{2:3}\); 16 in RIL), two QTL \(\times \) environment interactions (both in \(\hbox {F}_{2:3})\), 11 pairs of epistatic interactions (seven in \(\hbox {F}_{2:3}\); four in RIL) and four stable QTLs in both the \(\hbox {F}_{2:3}\) and RILs were detected. The RIL population had higher detection power than the \(\hbox {F}_{2:3}\) population. Nevertheless, QTL \(\times \) environment interactions and epistatic interactions could be more easily detected in the \(\hbox {F}_{2:3}\) population than in the RILs. Overall, the QTL mapping results in the \(\hbox {F}_{2:3}\) and RILs were greatly influenced by genetic generations and environments. Finally, fine mapping for a novel and major QTL, qTTL-2-3 (bin 2.07), which accounted for over 8.49% of the phenotypic variation across different environments and generations, could be useful in marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austin D. F. and Lee M. 1996 Comparative mapping in \(\text{ F }_{2:3}\) and \(\text{ F }_{6:7}\) generations of quantitative trait loci for grain yield and yield components in maize. Theor. Appl. Genet.  92, 817–826.

    Article  CAS  PubMed  Google Scholar 

  • Beavis W. D., Grant D., Albertsen M. and Fincher R. 1991 Quantitative trait loci for plant height in four maize populations and their associations with quantitative genetic loci. Theor. Appl. Genet.  83, 141–145.

    Article  CAS  PubMed  Google Scholar 

  • Berke T. G. and Rocheford T. R. 1999 Quantitative trait loci for tassel traits in maize. Crop Sci.  39, 1439–1443.

    Article  Google Scholar 

  • Blanc G., Charcosset A., Mangin B., Gallais A. and Moreau L. 2006 Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor. Appl. Genet.  113, 206–224.

    Article  CAS  PubMed  Google Scholar 

  • Bortiri E., Chuck G., Vollbrecht E., Rocheford T., Martienssen R. and Hake S. 2006 ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell  18, 574–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brekke B., Edwards J. and Knapp A. 2011 Selection and adaptation to high plant density in the Iowa stiff stalk synthetic maize (Zea mays L.) population: II. Plant morphology. Crop Sci.  51, 2344–2351.

    Google Scholar 

  • Brewbaker J. L. 2015 Diversity and genetics of tassel branch numbers in maize. Crop Sci.  55, 65–78.

    Article  Google Scholar 

  • Brown P. J., Upadyayula N., Mahone G. S., Tian F., Bradbury P. J., Myles S. et al. 2011 Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet.  7, e1002383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckler E. S., Holland J. B., Bradbury P. J., Acharya C. B., Brown P. J., Browne C. et al. 2009 The genetic architecture of maize flowering time. Science  325, 714–718.

    Article  CAS  PubMed  Google Scholar 

  • Cao D. N., Cheng H., Wu W., Soo H. M. and Peng J. R. 2006 Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol.  142, 509–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chardon F., Virlon B., Moreau L., Falque M., Joets J., Decousset L. et al. 2004 Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics  168, 2169–2185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D. H. and Ronald P. C. 1999 A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Report  17, 53–57.

    Article  CAS  Google Scholar 

  • Chen Z. L., Wang B. B., Dong X. M., Liu H., Ren L. H., Chen J. et al.  2014 An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics  15, 433.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuck G. 2002 The control of spikelet meristem identity by the branched silkless1 gene in maize. Science  298, 1238–1241.

    Article  CAS  PubMed  Google Scholar 

  • Chuck G., Meeley R. B. and Hake S. 1998 The control of maize spikelet meristem fate by theAPETALA2-like gene indeterminate spikelet1. Gene Dev.  12, 1145–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook J. P., McMullen M. D., Holland J. B., Tian F., Bradbury P., Ross-Ibarra J. et al.  2012 Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol.  158, 824–834.

    Article  CAS  PubMed  Google Scholar 

  • Doebley J., Stec A. and Hubbard L. 1997 The evolution of apical dominance in maize. Nature  386, 485–488.

    Article  CAS  PubMed  Google Scholar 

  • Dofing S. M., D’Croz-Mason N. and Thomas-Compton M. A. 1991 Inheritance of expansion volume and yield in two popcorn \(\times \) dent corn crosses. Crop Sci.  31, 715–718.

    Article  Google Scholar 

  • Duvick D. N. 1958 Yield and other agronomic characteristics of cytoplasmically pollen sterile corn hybrids, compared to their normal counterparts. Agron. J.  41, 113–117.

    Google Scholar 

  • Duvick D. N. 1997 What is yield? In Developing drought- and low n-tolerant maize. Proceedings of a Symposium, March 25–29, 1996, CIMMYT, El Batan, Mexico (ed. G. O. Edmeades, M. Banziger, H. R. Mickelson and C. B. Penã–Valdivia), pp. 332–335. CIMMYT, Mexico.

  • Duvick D. N. and Cassman K. G. 1999 Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci.  39, 1622–1630.

    Article  Google Scholar 

  • Duvick D. N., Smith J. S. C. and Cooper M. 2004 Long-term selection in a commercial hybrid maize breeding program. In Plant breeding reviews  (ed. J. Janick), pp. 109–151. Wiley, New York.

    Google Scholar 

  • Edwards J. 2011 Changes in plant morphology in response to recurrent selection in the Iowa stiff stalk synthetic maize population. Crop Sci.  51, 2353–2361.

    Google Scholar 

  • Fan J. B., Gunderson K. L., Bibikova M., Yeakley J. M., Chen J., Wickham-Garcia E. et al. 2006 Illumina universal bead arrays. Methods Enzymol.  410, 57–73.

    Article  CAS  PubMed  Google Scholar 

  • Eveland A. L., Goldshmidt A., Pautler M., Morohashi K., Liseron-Monfils C., Sunita L. et al. 2014 Regulatory modules controlling maize inflorescence architecture. Genome Res.  24, 431–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer K. S., Edmeades G. O. and Johnson E. C. 1987 Recurrent selection for reduced tassel branch number and reduced leaf area density above the ear in tropical maize populations. Crop Sci.  27, 1150–1156.

    Article  Google Scholar 

  • Geraldi I. O., Miranda Filho J. B. and Vencovsky R. 1985 Estimates of genetic parameters for tassel characters in maize (Zea mays L) and breeding perspectives. Maydica  30, 1–14.

    Google Scholar 

  • Grogan C. O. 1956 Detasseling responses in corn. Agron. J.  48, 247–249.

    Article  Google Scholar 

  • Hallauer A. R. and Mirando F. J. B. 1988 Quantitative genetics in maize breeding, 2nd edition. Iowa State University Press, Iowa State University.

    Google Scholar 

  • Hou X., Liu Y., Xiao Q., Wei B., Zhang X., Gu Y. et al. 2015 Genetic analysis for canopy architecture in an \(\text{ F }_{2:3}\) population derived from two-type foundation parents across multi-environments. Euphytica  205, 421–440.

    Article  Google Scholar 

  • Jiao Y. P., Zhao H. N., Ren L. H., Song W. B., Zeng B. and Guo J. J. 2012 Genome-wide genetic changes during modern breeding of maize. Nat. Genet.  44, 812–815.

    Article  CAS  PubMed  Google Scholar 

  • Kaplinsky N. J. and Freeling M. 2003 Combinatorial control of meristem identity in maize inflorescence. Development  130, 1149–1158.

    Article  CAS  PubMed  Google Scholar 

  • Knapp S. J. and Bridges W. C. 1990 Using molecular markers to estimate quantitative trait locus parameters; power and genetic variances for unreplicated and replicated progeny. Genetics  126, 769–777.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp S. J., Stroup W. W. and Ross W. M. 1985 Exact confidence intervals for heritability on a progeny mean basis. Crop Sci.  25, 192–194.

    Article  Google Scholar 

  • Kosambi D. D. 1943 The estimation of map distances from recombination values. Ann. Eugen.  12, 172–175.

    Article  Google Scholar 

  • Ku L. X., Zhang J., Guo S. L., Liu H. Y., Zhao R. F. and Chen Y. H. 2012 Integrated multiple population analysis of leaf architecture traits in maize (Zea mays  L.). J. Exp. Bot.  63, 261–274.

    Article  CAS  PubMed  Google Scholar 

  • Lambert R. J. and Johnson R. R. 1977 Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Sci.  18, 499–502.

    Article  Google Scholar 

  • Lan J. H., Li X. H., Gao S. R., Zhang B. S. and Zhang S. H. 2005 QTL analysis of yield components in maize under different environments. Acta. Agro. Sinica  31, 1253–1259.

    CAS  Google Scholar 

  • Leonard W. H. and Kiesselbach T. A. 1932 The effect of the removal of tassels on the yield of corn. J. Amer. Soc. Agro.  24, 514–516.

    Article  Google Scholar 

  • Li C., Li Y., Shi Y., Song Y., Zhang D., Buckler E. S. et al. 2015 Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One  10, e0121624.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J. Z., Zhang Z. W., Li Y. L., Wang Q. L. and Zhou Y. G. 2011 QTL consistency and meta-analysis for grain yield components in three generations in maize. Theor. Appl. Genet.  122, 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Li Y., Dong Y., Niu S., Cui D., Wang Y. and Liu Y. et al. 2008 Identification of agronomically favorable quantitative trait loci alleles from a dent corn inbred Dan232 using advanced backcross QTL analysis and comparison with the \(\text{ F }_{2:3}\) population in popcorn. Mol. Breed.  21, 1–14.

    Article  CAS  Google Scholar 

  • Li Y. L., Lu F. Y., Du Z. W., Wu S. W. and Han C. P. 2002 Preliminary report on improvement result to popcorn using normal corn germplasm and backcross. Acta. Agric. Boreali-Sin.  17, 37–43.

    CAS  Google Scholar 

  • Li Y. L., Niu S. Z., Dong Y. B., Cui D. Q., Wang Y. Z., Liu Y. Y. et al. 2007 Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross \(\text{ BC }_{2}\text{ F }_{2}\) population and comparison with its \(\text{ F }_{2:3}\) population in popcorn. Theor. Appl. Genet.  115, 129–140.

    Article  CAS  PubMed  Google Scholar 

  • Li Z. K., Yu S. B., Lafitte H. R., Huang N., Courtois B., Hittalmani S. et al. 2003 QTL \(\times \) environment interactions in rice. I. Heading date and plant height. Theor. Appl. Genet.  108, 141–153.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y. H., Yi Q., Hou X. B., Zhang X. G., Zhang J. J., Liu H. M. et al. 2016a Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population. Genet. Mol. Res.  15, gmr.15028465.

  • Liu Y., Hou X., Xiao Q., Yi Q., Bian S., Hu Y. et al. 2016b Genetic analysis in maize foundation parents with mapping population and testcross population: Ye478 carried more favorable alleles and using QTL information could improve foundation parents. Front. Plant Sci.  7, 1417

    PubMed  PubMed Central  Google Scholar 

  • Mathias L. 2012 MapDisto: fast and efficient computation of genetic linkage maps. Mol. Breed. 30, 1231–1235.

    Article  Google Scholar 

  • McSteen P. and Hake S. 2001 Barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development  128, 2881–2891.

    CAS  PubMed  Google Scholar 

  • Mickelson S. M., Stuber C. S., Senior L. and Kaeppler S. M. 2002 Quantitative trait loci controlling leaf and tassel traits in a \(\text{ B73 }\times \text{ Mo17 }\) population of maize. Crop Sci.  42, 1902–1909.

    Article  CAS  Google Scholar 

  • Mihaljevic R., Utz H. F. and Melchinger A. E. 2004 Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of European maize. Crop Sci.  44, 114–124.

    Article  CAS  Google Scholar 

  • Mock J. J. and Pearce R. B. 1975 An ideotype of maize. Euphytica  24, 613–623.

    Article  Google Scholar 

  • Mock J. J. and Schuetz S. H. 1974 Inheritance of tassel branch number in maize. Crop Sci.  14, 885–888.

    Article  Google Scholar 

  • Moreno-Gonzalez J. 1993 Efficiency on generations for estimating marker-associated QTL effects by multiple regression. Genetics  135, 223–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng B., Li Y. X., Wang Y., Liu C., Liu Z. Z., Tan W. W. et al. 2011 QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor. Appl. Genet.  122, 1305–1320.

    Article  PubMed  Google Scholar 

  • Peng J., Richards D. E., Hartley N. M., Murphy G. P., Devos K. M., Flintham J. E. et al. 1999 Green revolution genes encode mutant gibberellin response modulators. Nature  400, 256–261.

    Article  CAS  PubMed  Google Scholar 

  • Qiao S. B., Wang Y. H., Yang K. C., Rong T. Z., Pan G. T., Gao S. B. 2009 Effects contributed by different donor parents and backcross times on R08 improvement. Acta. Agron.  35, 2187–2196.

    Article  CAS  Google Scholar 

  • Rice W. R. 1989 Analyzing tables of statistical tests. Evolution  43, 223–225.

    Article  PubMed  Google Scholar 

  • Satoh-Nagasawa N., Nagasawa N., Malcomber S., Sakai H. and Jackson D. 2006 A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature  441, 227–230.

    Article  CAS  PubMed  Google Scholar 

  • Schuetz S. H. and Mock J. J. 1978 Genetics of tassel branch number in maize and its implications for a selection program for small tassel size. Theor. Appl. Genet.  53, 265–271.

    CAS  PubMed  Google Scholar 

  • Schwanke R. K. 1965 Alteration of reproductive attributes of corn varieties by population and detasseling (Dissertation). Iowa State University Press, Iowa State University.

  • Semagn K., Beyene Y., Warburton M. L., Tarekegne A., Mugo S., Meisel B. et al. 2013 Meta-analyses of QTL for grain yield and anthesis-silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genomics  14, 313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sofi P. A. 2007 Genetic analysis of tassel and ear characters in maize (Zea mays L.) using triple test cross. Asian J. Plant Sci.  6, 881–883.

    Article  Google Scholar 

  • Stuber C. W., Edwards M. D. and Wendel J. F. 1987 Molecular markerfacilitated investigations of in maize. II. Factors influencing yield and its component traits. Crop Sci.  27, 639–648.

    Article  Google Scholar 

  • Taguchi-Shiobara F., Yuan Z., Hake S. and Jackson D. 2001 The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev.  15, 2755–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadyayula N., da Silva H. S., Bohn M. O. and Rocheford T. R. 2006 Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor. Appl. Genet.  112, 592–606.

    Article  CAS  PubMed  Google Scholar 

  • Voorrips R. E. 2002 MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered.  93, 77–78.

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E., Springer P. S., Goh L., Buckler E. S. and Martienssen R. 2005 Architecture of floral branch systems in maize and related grasses. Nature  436, 1119–1126.

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E., Veit B., Sinha N. and Hake S. 1991 The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature  350, 241–243.

    Article  CAS  PubMed  Google Scholar 

  • Wang D. L., Zhu J., Li Z. K. and Paterson A. H. 1999 Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor. Appl. Genet.  99, 1255–1264.

    Article  Google Scholar 

  • Wang Y., Huang Z., Deng D., Ding D., Zhang R., Wang S. et al. 2013 Meta-analysis combined with syntenic metaQTL mining dissects candidate loci for maize yield. Mol. Breed.  31, 601–614.

    Article  Google Scholar 

  • Wu X., Li Y. X., Fu J. J., Li X., Li C. H., Zhang D. F. et al. 2016 Exploring identity-by-descent segments and putative functions using different foundation parents in maize. PLoS One  11, e0168374. https://doi.org/10.1371/journal.pone.0168374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamasaki M., Tenaillon M. I., Bi I. V., Schroeder S. G., Sanchez V. H. and Doebley J. F. 2005 A large-Scale Screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell  17, 2859–2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C., Zhang L., Jia A. and Rong T. 2016 Identification of QTL for maize grain yield and kernel-related traits. J. Genet.  95, 239–247.

    Article  PubMed  Google Scholar 

  • Yang J., Zhu J. and Williams R. W. 2007 Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics  23, 1527–1536.

    Article  CAS  PubMed  Google Scholar 

  • Yang J., Hu C. C., Hu H., Yu R. D., Xia Z., Ye X. Z. et al. 2008 QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics  24, 721–723.

    Article  PubMed  Google Scholar 

  • Zeng Z. B. 1993 Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc. Nat. Acad. Sci. USA  90, 10972–10976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Z. B. 1994 Precision mapping of quantitative trait loci. Genetics  136, 1457–1468.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X., Zhang Z. L., Park J., Tyler L., Yusuke J., Qiu K. et al. 2016 The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and Signaling. Plant Physiol.  171, 2760–2770.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Y., Ren G., Yue G., Li Z., Qu X., Hou G. et al. 2007 Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize. Plant Cell Rep.  26, 2137–2147.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler K. E. and Ashman B. 1994 Popcorn. In Specialty corns (ed. A. R. Hallauer), pp. 189–223. CRC Press, New York, USA.

    Google Scholar 

Download references

Acknowledgements

Research supported by the Project of National Major Basic Dairy Research ‘973’ Plan (nos. 2014CB138202 and 2011CB100106) and Science and Technology Plan Projects in Sichuan Province (no. 2016JY0065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubi Huang.

Additional information

Corresponding editor: Umesh C. Lavania

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Q., Liu, Y., Zhang, X. et al. Comparative mapping of quantitative trait loci for tassel-related traits of maize in \(\hbox {F}_{2:3}\) and RIL populations. J Genet 97, 253–266 (2018). https://doi.org/10.1007/s12041-018-0908-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-0908-x

Keywords

Navigation