Skip to main content
Log in

Petrography and geochemistry of carbonatite breccia from Amba Dongar carbonatite complex, Gujarat in the Deccan Large Igneous Province suggest mantle origin

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Abstract

This study reports petrography, geochemistry, and δ13C and δ18O composition of carbonatite clasts in carbonatite breccias from the Amba Dongar carbonatite (ADC) complex in the Deccan Large Igneous Province. Petrography reveals early-emplacement of calcio- and ferro-carbonatite. The mineralogy and elemental abundances of calcio- and ferro-carbonatite clasts in breccias are similar to those of the later-formed ring dyke carbonatites, indicating a common source. In the δ13C–δ18O space, calciocarbonatite clasts and carbonatites of main ring dyke of Amba Dongar plot within the extended primary carbonatite field, indicating its mantle origin. Positive δ18O (>+10‰) values of clasts show the role of recycled crust and hydrothermal alteration. We propose a model for the origin of carbonatite breccia and later-formed ring dyke of ADC, in which a parental carbonated silicate melt forms carbonatite melt and silicate melt through liquid immiscibility at crustal depths, and intrusion of these melts forming dykes causes up-doming (stages I–III). In stages IV–VI, episodic evacuation of the carbonatite magma chamber initiates caldera subsidence leading to extensive brecciation of early-formed carbonatites. Later, the lateral spread of the magma chamber leads to the formation of the carbonatite ring dyke.

Research highlights

  • The δ13C and δ18O compositions of Amba Dongar carbonatite breccias and carbonatites of the ring dyke lie within the primary carbonatite field indicating its mantle origin.

  • Mineralogy and geochemistry of carbonatite clasts and carbonatites reveal a common source.

  • Evacuation of melt from magma chamber and regeneration of carbonatite melt initiates caldera subsidence and extensive brecciation of the subsurface carbonatite dykes.

  • Genesis of Amba Dongar complex is similar to that of the Alnö carbonatite complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

source for compositional fields for Amba Dongar calciocarbonatites and ferrocarbonatites are the same as figure 7. Data for calciocarbonatite (n = 5) from calciocarbonatite plugs and ankeritic carbonatite groundmass (n = 1) of carbonatite breccia from Siriwasan carbonatite complex are taken from Viladkar and Gittins (2016).

Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Amores-Casals S, Gonçalves A O, Melgarejo J C and Martí Molist J 2020 Nb and REE distribution in the Monte Verde Carbonatite–Alkaline–Agpaitic Complex (Angola); Minerals 10 5.

    Article  Google Scholar 

  • Amores-Casals S, Melgarejo J C, Bambi A C J M, Gonçalves A O, Morais E, Manuel J, Costanzo A and Martí Molist J 2019 Lamprophyre–Carbonatite magma mingling and subsolidus processes as key controls on critical elements enrichment in carbonatites: The Bonga complex (Angola); Minerals 9 601.

    Article  Google Scholar 

  • Andersson M, Malehmir A, Troll V R, Dehghannejad M, Juhlin C and Ask 2013 Carbonatite ring-complexes explained by caldera-style volcanism; Sci. Rep. 3(1) 1–9.

    Article  Google Scholar 

  • Basu A R, Renne P R, Dasgupta D K, Teichmann F and Poreda R J 1993 Early and late alkali igneous pulses and a high-3He plume origin for the Deccan flood basalts; Science 261 902–906.

    Article  Google Scholar 

  • Bell K 2001 Carbonatites: Relationships to mantle-plume activity; In: Mantle plumes: Their identification through time (eds) Ernst R E and Buchan K L, Geol. Soc. Am. Spec. Paper 352 267–290.

  • Bell K and Rukhlov A S 2004 Carbonatites from the Kola Alkaline Province: Origin, evolution and source characteristics; In: Phoscorites and carbonatites from mantle to mine: The key example of the Kola Alkaline Province; Mineral. Soc. Ser. 10 433–468.

  • Bell K and Tilton G R 2002 Probing the mantle: The story from carbonatites; Eos, Trans. Am. Geophys. Union 83 273–277.

    Article  Google Scholar 

  • Bhattacharya S K, Jani R A, Tripathi S C and Lahiri T C 1997 Carbon and oxygen isotopic compositions of infra-trappean limestones from central and western India and their depositional environment; Geol. Soc. India 50 289–296.

    Google Scholar 

  • Bizimis M, Salters V J M and Dawson J B 2003 The brevity of carbonatite sources in the mantle: Evidence from Hf isotopes; Contrib. Mineral. Petrol. 145 281–300.

    Article  Google Scholar 

  • Chandra J, Paul D, Stracke A, Chabaux F and Granet M 2019 The origin of carbonatites from Amba Dongar within the Deccan Large Igneous Province; J. Petrol. 60(6) 1119–1134.

    Article  Google Scholar 

  • Chandra J, Paul D, Viladkar S G and Sensarma S 2018 Origin of the Amba Dongar carbonatite complex, India and its possible linkage with the Deccan Large Igneous Province; Geol. Soc. London, Spec. Publ. 463(1) 137–169.

  • Coplen T B 1988 Normalization of oxygen and hydrogen isotope data; Chem. Geol.: Isotope Geoscience Section 72(4) 293–297.

  • Deans T, Sukheswala R N, Sethna S F and Viladkar S G 1972 Metasomatic feldspar rocks (potash fenites) associated with the fluorite deposits and carbonatites of Amba Dongar, Gujarat India; Trans. Inst. Mining Metall. 81 B1–B9.

    Google Scholar 

  • Deines P 1989 Stable isotope variations in carbonatites; In: Carbonatites: Genesis and evolution (ed.) Bell K, Unwin Hyman, pp. 301–359.

  • Demény A, Ahijado A, Casillas R and Vennemann T W 1998 Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): A C, O and H isotope study; Lithos 44 101–115.

    Article  Google Scholar 

  • Dhote P, Bhan U and Verma D 2021 Genetic model of carbonatite hosted rare earth elements mineralization from Ambadongar Carbonatite Complex, Deccan Volcanic Province, India; Ore Geol. Rev. 135 104215.

  • Elliott H A L, Wall F, Chakhmouradian A R, Siegfried P R, Dahlgren S, Weatherley S, Finch A A, Marks M A W, Dowman E and Deady E 2018 Fenites associated with carbonatite complexes: A review; Ore Geol. Rev. 93 38–59.

    Article  Google Scholar 

  • Ernst R E and Bell K 2010 Large igneous provinces (LIPs) and carbonatites; Mineral. Petrol. 98 55–76.

    Article  Google Scholar 

  • Fosu B R, Ghosh P and Viladkar S G 2020 Clumped isotope geochemistry of carbonatites in the north-western Deccan igneous province: Aspects of evolution, post-depositional alteration and mineralisation; Geochim Cosmochim. Acta 274 118–135.

    Article  Google Scholar 

  • Gittins J 1989 The origin and evolution of carbonatite magmas; In: Carbonatites: Genesis and evolution (ed.) Bell K, Unwin Hyman, London, pp. 580–600.

    Google Scholar 

  • Green D H and Wallace M E 1988 Mantle metasomatism by ephemeral carbonatite melts; Nature 336 459–462.

    Article  Google Scholar 

  • Gwalani L G, Rock N M S, Chang W J, Fernandez S, Allégre C J and Prinzhofer A 1993 Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Deccan Igneous Province, Gujarat, India: 1. Geology, petrography and petrochemistry; Mineral. Petrol. 47 219–253.

    Article  Google Scholar 

  • Gwalani L G, Rogers K A, Demeny A, Groves D I, Ramsay R, Beard A, Downes P J and Eves A 2009 The Yungul carbonatite dykes associated with the epithermal fluorite deposit at Speewah, Kimberley, Australia: Carbon and oxygen isotope constraints on their origin; Mineral. Petrol. 98 123–141.

    Article  Google Scholar 

  • Halama R, Vennemann T, Siebel W and Markl G 2005 The Grønnedal-Ika carbonatite–Syenite complex, south Greenland: Carbonatite formation by liquid immiscibility; J. Petrol. 46 191–217.

    Article  Google Scholar 

  • Harmer R E and Gittins J 1998 The case for primary, mantle-derived Carbonatite magma; J. Petrol. 39 1895–1903.

    Article  Google Scholar 

  • Harmer R E and Nex P A M 2016 Rare earth deposits of Africa; Episodes 39(2) 381–406.

    Article  Google Scholar 

  • Keith M L and Weber J N 1964 Carbon and oxygen isotopic composition of selected limestones and fossils; Geochim. Cosmochim. Acta 28 1787–1816.

    Article  Google Scholar 

  • Keller J and Hoefs J 1995 Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai; In: Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites (eds) Bell K and Keller J, Springer, pp. 113–123.

  • Kjarsgaard B A and Hamilton D L 1989 The genesis of carbonatites by liquid immiscibility; In: Carbonatites: Genesis and evolution (ed.) Bell K, Unwin Hyman, London, pp. 388–403.

    Google Scholar 

  • Kresten P 1980 The Alnö complex: Tectonics of dyke emplacement; Lithos 13 153–158.

    Article  Google Scholar 

  • Kresten P 1988 The chemistry of fenitization: Examples from Fen Norway; Chem. Geol. 68(3–4) 329–349.

    Article  Google Scholar 

  • Mahoney J J, Macdougall J D, Lugmair G W, Gopalan K and Krishnamurthy P 1985 Origin of contemporaneous tholeiitic and K-rich alkalic lavas: A case study from the northern Deccan Plateau, India; Earth Planet. Sci. Lett. 72 39–53.

    Article  Google Scholar 

  • Meert J G, Walderhaug H J, Torsvik T H and Hendriks B W H 2007 Age and paleomagnetic signature of the Alnö carbonatite complex (NE Sweden): Additional controversy for the Neoproterozoic paleoposition of Baltica; Precamb. Res. 154 159–174.

    Article  Google Scholar 

  • Mitchell R H 2005 Carbonatites and carbonatites and carbonatites; Can. Mineral. 43(6) 2049–2068.

    Article  Google Scholar 

  • Morogan V and Woolley A R 1988 Fenitization at the Alnö carbonatite complex, Sweden; distribution, mineralogy and genesis; Contrib. Mineral. Petrol. 100 169–182.

    Article  Google Scholar 

  • Nasir S, Al-Khirbash S, Rollinson H, Al-Harthy A, Al-Sayigh A, Al-Lazki A, Theye T, Massonne H-J and Belousova E 2011 Petrogenesis of early cretaceous carbonatite and ultramafic lamprophyres in a diatreme in the Batain Nappes, Eastern Oman continental margin; Contrib. Mineral. Petrol. 161(1) 47–74.

    Article  Google Scholar 

  • Palme H and O'Neill H D C 2014 Cosmochemical estimates of mantle composition; In: Treatise on Geochemistry (ed.) Carlson R W, 3 1–39.

  • Palmer D A and Williams-Jones A E 1996 Genesis of the carbonatite-hosted fluorite deposit at Amba Dongar, India: Evidence from fluid inclusions, stability isotopes, and whole rock-mineral geochemistry; Econ. Geol. 91(5) 934–950.

    Article  Google Scholar 

  • Paul D and Skrzypek G 2007 Assessment of carbonate-phosphoric acid analytical technique performed using GasBench II in continuous flow isotope ratio mass spectrometry; Int. J. Mass Spectrom. 262(3) 180–186.

    Article  Google Scholar 

  • Paul D, Chandra J and Halder M 2020 Proterozoic Alkaline rocks and carbonatites of peninsular India: A review; Episodes 43(1) 249–277.

    Article  Google Scholar 

  • Paul D, Skrzypek G and Forizs I 2007 Normalization of measured stable isotopic compositions to isotope reference scales – A review; Rapid Commun. Mass Spectrom. 21 3006–3014.

    Article  Google Scholar 

  • Ramesh R, Ray J S and Pande K 1993 Raleigh isotopic fractionation from a multicomponent source; In: Proceedings 6th National Symposium on Mass Spectrometry, India, pp. 298–300.

  • Ray J S 1997 Stable and radioisotopic constraints on the evolution of Mesozoic carbonatite-alkaline complexes of India; PhD thesis, University of Baroda, Gujarat, India.

  • Ray J S 1998 Trace element and isotope evolution during concurrent assimilation, fractional crystallization, and liquid immiscibility of a carbonated silicate magma; Geochim. Cosmochim. Acta. 62 3301–3306.

    Article  Google Scholar 

  • Ray J S 2009 Radiogenic isotopic ratio variations in carbonatites and associated alkaline silicate rocks: Role of crustal assimilation; J. Petrol. 50 1955–1971.

    Article  Google Scholar 

  • Ray J S and Pande K 1999 Carbonatite alkaline magmatism associated with continental flood basalts at stratigraphic boundaries: Cause for mass extinctions; Geophys. Res. Lett. 26 1917–1920.

    Article  Google Scholar 

  • Ray J S and Ramesh R 1999 Evolution of carbonatite complexes of the Deccan flood basalt province: Stable carbon and oxygen isotopic constraints; J. Geophys. Res. Solid Earth 104 29,471–29,483.

    Article  Google Scholar 

  • Ray J S and Ramesh R 2000 Rayleigh fractionation of stable isotopes from a multicomponent source; Geochim. Cosmochim. Acta 64 299–306.

    Article  Google Scholar 

  • Ray J S and Ramesh R 2006 Stable carbon and oxygen isotopic compositions of Indian carbonatites; Int. Geol. Rev. 48 17–45.

    Article  Google Scholar 

  • Ray J S, Pande K and Pattanayak S K 2003 Evolution of the Amba Dongar carbonatite complex: Constraints from 40Ar–39Ar chronologies of the inner basalt and an alkaline plug; Int. Geol. Rev. 45 857–862.

    Article  Google Scholar 

  • Ray J S, Ramesh R, Pande K, Trivedi J R, Shukla P N and Patel P P 2000 Isotope and rare earth element chemistry of carbonatite-alkaline complexes of Deccan volcanic province: Implications to magmatic and alteration processes; J. Asian Earth Sci. 18 177–194.

    Article  Google Scholar 

  • Ray J S and Shukla P N 2004 Trace element geochemistry of Amba Dongar carbonatite complex, India: Evidence for fractional crystallization and silicate-carbonate melt immiscibility; J. Earth Syst. Sci. 113 519–531.

    Article  Google Scholar 

  • Robertson A H F and Stillman C J 1979 Submarine volcanic and associated sedimentary rocks of the Fuerteventura Basal Complex, Canary Islands; Geol. Mag. 116 203–214.

    Article  Google Scholar 

  • Santos R V and Clayton R N 1995 Variations of oxygen and carbon isotopes in carbonatites: A study of Brazilian alkaline complexes; Geochim Cosmochim. Acta 59 1339–1352.

    Article  Google Scholar 

  • Sarkar A and Bhattacharya S K 1992 Carbonatites from Rajasthan indicate mantle carbon and oxygen isotope composition; Curr. Sci. 62 368–370.

    Google Scholar 

  • Satyanarayanan M, Balaram V, Sawant S S, Subramanyam K S V, Krishna G V, Dasaram B and Manikyamba C 2018 Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry; At. Spectrosc. 39(1) 1–15.

    Article  Google Scholar 

  • Sen G, Bizimis M, Das R, Paul D K, Ray A and Biswas S 2009 Deccan plume, lithosphere rifting, and volcanism in Kutch, India; Earth Planet. Sci. Lett. 277 101–111.

    Article  Google Scholar 

  • Simonetti A, Bell K and Viladkar S G 1995 Isotopic data from the Amba Dongar carbonatite complex, west-central India: Evidence for an enriched mantle source; Chem. Geol. 122 185–198.

    Article  Google Scholar 

  • Srivastava R K 1997 Petrology, geochemistry and genesis of rift-related carbonatites of Ambadungar, India; Mineral. Petrol. 61 47–66.

    Article  Google Scholar 

  • Srivastava R K and Taylor L A 1996 Carbon and oxygen isotope variations in Indian carbonatites; Int. Geol. Rev. 38 419–429.

    Article  Google Scholar 

  • Streckeisen A 1980 Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks; IUGS Subcommission on the systematics of igneous rocks; Geol. Rundsch. 69 194–207.

    Article  Google Scholar 

  • Sukheswala R N and Udas G R 1967 Fluorspar mineralization related to carbonatite-alkalic complex at Amba Dongar, Gujarat State; Curr. Sci. 36(1) 14–16.

    Google Scholar 

  • Sweeney R J 1994 Carbonatite melt compositions in the Earth’s mantle; Earth Planet. Sci. Lett. 128 259–270.

    Article  Google Scholar 

  • Tandon S K, Sood A, Andrews J E and Dennis P F 1995 Palaeoenvironments of the dinosaur-bearing Lameta beds (Maastrichtian), Narmada Valley, Central India; Paleogeogr. Paleoclimatol. Paleoecol. 117 153–184.

    Article  Google Scholar 

  • Taylor H P, Frenchen J and Degens E T 1967 Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany, and the Alnö district, Sweden; Geochim. Cosmochim. Acta 31 407–430.

    Article  Google Scholar 

  • Thi T N, Wada H, Ishikawa T and Shimano T 2014 Geochemistry and petrogenesis of carbonatites from South Nam Xe, Lai Chau area, northwest Vietnam; Mineral. Petrol. 108 371–390.

    Article  Google Scholar 

  • Van Gosen B S, Verplanck P L, Seal II R R, Long K R and Gambogi J 2017 Rare-earth elements (No. 1802-O); US Geological Survey.

  • Veksler I V, Nielsen T F D and Sokolov S V 1998 Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: Implications for carbonatite genesis; J. Petrol. 39 2015–2031.

    Article  Google Scholar 

  • Viladkar S G 1981 The carbonatites of Amba Dongar, Gujarat, India; Bull. Geol. Soc. Finland 53 17–28.

    Article  Google Scholar 

  • Viladkar S G and Bismayer U 2010 Compositional variation in pyrochlores of Amba Dongar carbonatite complex, Gujarat; J. Geol. Soc. India 75(3) 495–502.

    Article  Google Scholar 

  • Viladkar S G and Gittins J 2016 Trace elements and REE geochemistry of Siriwasan carbonatite, Chhota Udaipur, Gujarat; J. Geol. Soc. India 87 709–715.

    Article  Google Scholar 

  • Viladkar S G and Ramesh R 2014 Stable isotope geochemistry of some Indian Carbonatites: Implications for magmatic processes and post-emplacement hydrothermal alteration; Comunicaçõe Geológicas 101 1.

    Google Scholar 

  • Viladkar S G and Schidlowski M 2000 Carbon and oxygen isotope geochemistry of the Amba Dongar carbonatite complex, Gujarat, India; Gondwana Res. 3 415–424.

    Article  Google Scholar 

  • Von Eckermann H 1948 The alkaline district of Alno island; Swedish Geol. Surv., Stockholm’.

  • Von Eckermann H 1960 Boulders of volcanic breccia at the Sälskär shoals north of Alnö Island; Arkiv För Mineralogi Och Geologi 40 529–537.

    Google Scholar 

  • Woolley A R and Kempe D R C 1989 Carbonatites: Nomenclature, average chemical compositions, and element distribution; In: Carbonatites: Genesis and evolution (ed.) Bell K, Unwin Hyman, London, pp. 1–14.

    Google Scholar 

  • Woolley A R and Kjarsgaard B A 2008 Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: Evidence from a global database; Can. Mineral. 46 741–752.

    Article  Google Scholar 

  • Wyllie P J 1987 Transfer of subcratonic carbon into kimberlites and rare earth carbonatites; In: Magmatic processes: Physicochemical principles; Geochem. Soc. 1 107–119.

Download references

Acknowledgements

JC and AU are grateful to Shri D U Vyas (General Manager), Mr S K Joshi (Dy General Manager), and Mr Shailesh R Patel (Survey Manager) of Gujarat Mineral Development Corporation (GMDC) for their kind assistance and hospitality during the fieldwork in Amba Dongar. JC thanks the Director of NGRI, and Dr C Manikyamba for granting permission to carry out the trace element analysis in the Geochemistry Division of NGRI, and Dr S S Sawant for assistance during trace element analysis using HR-ICPMS. We sincerely thank Jyotiranjan Ray and N V Chalapathi Rao for thoughtful and thorough reviews, which have significantly improved the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Debajyoti Paul and Jyoti Chandra conceived the idea, methodology and wrote the MS. Jyoti Chandra and Abhinav Uniyal did the petrographic, geochemical (major oxides), and stable C and O isotope analysis at IIT Kanpur. Jyoti Chandra carried out the literature review, data compilation, figure preparation, data interpretation and analyzed the trace element composition of carbonatite clasts. Abhinav Uniyal collected the samples, performed the measurements, prepared figures, and compiled data. All authors have contributed to the preparation of MS.

Corresponding author

Correspondence to Jyoti Chandra.

Additional information

Communicated by N V Chalapathi Rao

This article is part of the Topical Collection: Deccan Traps and other Flood Basalt Provinces – Recent Research Trends.

Supplementary materials pertaining to this article are available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 911 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, J., Paul, D. & Uniyal, A. Petrography and geochemistry of carbonatite breccia from Amba Dongar carbonatite complex, Gujarat in the Deccan Large Igneous Province suggest mantle origin. J Earth Syst Sci 131, 116 (2022). https://doi.org/10.1007/s12040-022-01861-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01861-w

Keywords

Navigation