Skip to main content
Log in

Mineralogy of Pakkanadu carbonatites and associated rocks, South India: constraints on evolution and evidences for REE enrichment

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Pakkanadu carbonatite-alkaline complex (PCAC) is one of the nine carbonatite-alkaline complexes, situated along the NE-SW trending Dhramapuri Rift Zone in Southern Granulite Terrain in South India. This oval-shaped intrusion comprises of syenite–carbonatite–dunite–pyroxenite association. The carbonatites of this deformed complex are dominated by calcite carbonatite over dolomite carbonatite and ankerite. The present study mainly focuses on identifying evidence of rare-earth element (REE) remobilization and enrichment based on petrography, mineral chemistry and whole-rock geochemistry of the PCAC carbonatites and associated rocks. Chief rare-earth and rare metal bearing minerals in these rocks include monazite-(Ce), allanite-(Ce), chevkinite-(Ce), pyrochlore, besides strontianite and barite. Geochemically, the studied carbonatites and fenites have enriched, but variable Ba (5300–236,900 ppm), Sr (4360–98,700 ppm), La (84–11,500 ppm), Ce (155–17,200 ppm) and Nd (55–3000 ppm), and Sr/Ba (0.06–3.23) molar ratio. The ΣREE range from 3508 to 32,300 ppm, dominantly contributed by light rare-earth elements (LREE). Presence of a component geochemically similar to benstonite carbonatite is reported during the present study. Geochemically the studied rocks are characterised by enrichment of LREE and elevated concentrations of incompatible, with positive spikes Ba, Sr and strong depletion of Nb, Ta, Ti, Zr and P in primitive mantle-normalized spider diagram. Besides these characters, the presence of phlogopite, amphibole, early magmatic monazite-group minerals and fluorapatite in the Pakkanadu carbonatites indicate that the initial carbonatite magma was enriched in REE, and generated by a low degree of partial melting of a metasomatised fertile mantle in intra-plate rift setting. In addition, low Nb/Y ratio (≤ 1.0), Zr/Sm (up to 6.4) and Hf/Sm (up to 0.12), very high Ba content is indicative of fluid-related metasomatism. The textural relations and mineral chemistry of REE-bearing mineral phases indicate that carbo-hydrothermal processes resulted in remobilization and enrichment of REE. All these factors point towards REE fertility in the PCAC carbonatites and associated fenites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ackerman L, Magna T, Rapprich V, Upadhyay D, Krátký O, Čejková B, Erban V, Kochergina YV, Hrstka T (2017) Contrasting petrogenesis of spatially related carbonatites from Samalpatti and Sevattur, Tamil Nadu, India. Lithos 284–285:257–275

    Article  Google Scholar 

  • Andersson M, Almqvist BS, Burchardt S, Troll VR, Malehmir A, Snowball I, Kübler L (2016) Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden. Sci Rep 6:1–13

    Article  Google Scholar 

  • Anenburg M, Mavrogenes JA (2018) Carbonatitic versus hydrothermal origin for fluorapatite REE–Th deposits: experimental study of REE transport and crustal “antiskarn” metasomatism. Am J Sci 318:335–366

    Article  Google Scholar 

  • Anenburg M, Mavrogenes JA, Bennett VC (2020) The Fluorapatite P–REE–Th Vein Deposit at Nolans Bore: Genesis by Carbonatite Metasomatism. J Petrol 61(1):1–41

    Article  Google Scholar 

  • Bagiński B, Macdonald R, Dzierżanowski P, Zozulya D, Kartashov PM (2015) Hydrothermal alteration of chevkinite-group minerals: products and mechanisms. Part 1. Hydration of chevkinite-(Ce). Mineral Mag, pp 1019−1037

  • Balasubramani S, Sahoo P, Bhattacharya D, Rengarajan M, Thangavel S, Bhatt AK, Verma MB, Nanda LK (2017) A note on anomalous concentration of scandium in the Pakkanadu alkaline complex, Salem district, Tamil Nadu, India. In: Viladkar SG, Duraiswami RA and Krishnamurthy P (eds.), Proc. International Seminar “Carbonatites-alkaline rocks and associated mineral deposits”, Amba Dongar, India. Abstract Vol 46:8–11

  • Bell K (1989) Carbonatites; Genesis and Evolution. Unwin Hyman, London

    Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace element compositions and their relationship to host rock type. Geochem Expl 76:45–69

    Article  Google Scholar 

  • Bhushan SK (2015) Geology of the Kamthai Rare Earth Deposit. J Geol Soc India 85:537–546

    Article  Google Scholar 

  • Bhushan SK, Kumar A (2013) First Carbonatite hosted REE Deposit from India. J Geol Soc India 81:41–60

    Article  Google Scholar 

  • Borodin LS, Gopal V, Moralev VM, Subramanian V, Ponikarov V (1971) Precambrian carbonatites of Tamil Nadu, south India. J Geol Soc India 12:101–112

    Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV (2009) The influence of water and fluorine on the melting of carbonated peridotite at 6 and 10 GPa. Lithos 112:249–259

    Article  Google Scholar 

  • Bühn B, Rankin AH (1999) Composition of natural, volatile-rich Na–Ca–REE−Sr carbonatitic fluids trapped in fluid inclusions. Geochim Cosmochim Acta 63:3781–3797

    Article  Google Scholar 

  • Burtseva MV, Ripp GS, Doroshkevich AG, Viladkar SG, Rammohan V (2013) Features of mineral and chemical composition of the Khamambettu carbonatites, Tamil Nadu. J Geol Soc India 81:655–664

    Article  Google Scholar 

  • Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160

    Article  Google Scholar 

  • Chakhmouradian AR, Reguir EP, Coueslan C, Yang P, (2016a) Calcite and dolomite in intrusive carbonatites. II Trace-Element Variations Mineral Petrol 110:361–377

    Google Scholar 

  • Chakhmouradian AR, Reguir EP, Zaitsev AN, Coue¨slan C, Xu C, Kynick´y J, Mumin HA, Yang P, (2016b) Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274–275:188–213

    Google Scholar 

  • Chakhmouradian AR, Wall F (2012) Rare earth elements: Minerals, mines, magnets (and more). Elem 8:333–340

    Article  Google Scholar 

  • Chen W, Honghui H, Bai T, Jiang S (2017) Geochemistry of Monazite within Carbonatite Related REE Deposits. Resours 6(51):2–15

    Google Scholar 

  • Davidson J, Turner S, Plank T (2013) Dy/Dy*: variation arising from mantle sources and petrogenetic processes. J Petrol 54(3):525–537

    Article  Google Scholar 

  • Decrée S, Boulvais P, Tack L, Andre´ L, Baele JM, (2016) Fluorapatite in carbonatite-related phosphate deposits: the case of the Matongo carbonatite (Burundi). Mineral Dep 51:453–466

    Article  Google Scholar 

  • Dhote P, Bhan U, Verma D (2021) Genetic model of carbonatite hosted rare earth elements mineralization from Ambadongar Carbonatite Complex, Deccan Volcanic Province, India. Ore Geol Rev 135. https://doi.org/10.1016/j.oregeorev.2021.104215

  • Downes PJ (2014) Stable H-C-O isotope and trace element geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, Western Australia: Implications for ydrothermal REE mineralization, carbonatite evolution and mantle source regions. Mineral Dep 49:905–932

    Article  Google Scholar 

  • Elliotta HAL, Wall F, Chakhmouradian AR, Siegfried PR, Dahlgren S, Weatherley S, Finch AA, Marks MAW, Dowman E, Deady E (2018) Fenites associated with carbonatite complexes: A review. Ore Geol Rev 93:38–59

    Article  Google Scholar 

  • Foley SE (1989) Experimental constraints on phlogopite chemistry in lamproites. I. The effect of water activity and oxygen fugacity. Europ J Mineral 1:417–426

    Article  Google Scholar 

  • Förster HJ, Harlov DE, Milke R (2000) Composition and Th–U–total Pb ages of huttonite and thorite from Gillespie’s Beach, South Island, New Zealand. Can Mineral 38:675–684

    Article  Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sc Lett 38:129–176

    Article  Google Scholar 

  • Giebel RJ, Gauert CDK, Marks MAW, Costin G, Markl G (2017) Multi-stage formation of REE minerals in the Palabora Carbonatite Complex, South Africa. Am Mineral 102:1218–1233

    Article  Google Scholar 

  • Gittins J (1989) The origin and evolution of carbonatite magmas. In: Bell. K. (ed.) Carbonatites: Genesis and Evolution. Unwin Hyman, pp 580–600

  • Gittins J, Beckett MF, Jago BC (1990) Composition of the fluid phase accompanying carbonatite magma: a critical evaluation. Am Mineral 75:1106–1109

    Google Scholar 

  • Gopalakrishnan K (1993) Supportive field evidence for Dharmapuri suture rift zone. Tamilnadu Geol Sur India 126(5):141–145

    Google Scholar 

  • Gopalakrishnan K (2001) A palaeo-Andean type margin within southern granulite terrain. India Geol Sur India 55:85–96

    Google Scholar 

  • Gopalakrishnan K, Ganesan TM (1992) A new tectonic model for the evolution of alkaline provinces of northern Tamilnadu. Geol Sur India 125(5):93–95

    Google Scholar 

  • Haas J, Shock EL, Sassani D (1995) Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high. Geochim Cosmochim Ac 59:4329–4350

    Article  Google Scholar 

  • Harmer RE, Gitiins J (1998) The case for primary, mantle-derived carbonatite mamga. J Petrol 39:1895–1903

    Article  Google Scholar 

  • Heinrich EW (1985) Infinite variations on a fenite theme. Indian Mineral 151–162

  • Heinrich EW, Anderson RJ (1965) Carbonatites and alkalic rocks of the Arkansas River area, Freemont County, Colorado. Am Mineral 50:1914–1920

    Google Scholar 

  • Hogarth DD, Williams CT, Jones P (2000) Primary zoning in pyrochlore group of minerals from carbonatites. Mineral Mag 64:683–697

    Article  Google Scholar 

  • Hornig-Kjarsgaard I (1998) Rare earth elements in sovitic carbonatites and their mineral phases. J Petrol 39:2105–2121

    Article  Google Scholar 

  • Hou Z, Liu Y, Tian S, Yang Z, Xie Y (2015) Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments. Sci Rept 5:1–10

    Google Scholar 

  • Hu L, Li YK, Wu ZJ, Bai Y, Wang AJ (2019) Two metasomatic events recorded in apatite from the ore-hosting dolomite marble and implications for genesis of the giant Bayan Obo REE deposit, Inner Mongolia, Northern China. J Asian Earth Sci 172:56–65

    Article  Google Scholar 

  • Jager E, Niggli E, Van Der Veen AH (1959) A hydrated barium strontium pyrochlore in a biotite rock from Panda Hill, Tanganyika. Mineral Mag 32:10–25

    Google Scholar 

  • Jia Y, Liu Y (2020) REE Enrichment during Magmatic-Hydrothermal Processes in Carbonatite-Related REE Deposits: A Case Study of the Weishan REE Deposit. China Minerals 10(25):2–30

    Google Scholar 

  • Kim SJ, Lee HK, Yin J, Park JK (2005) Chemistry and origin of monazites from carbonatite dikes in the Hongcheon-Jaeun district, Korea. J Asian Earth Sci 25:57–67

    Article  Google Scholar 

  • Kjarsgaard B, Mitchell R (2008) Solubility of Ta in the system CaCO3 - Ca(OH)2 - NaTaO3 - NaNbO3 ± Fat 0.1 GPa: implications for the crystallization of pyrochlore-group minerals in carbonatites. Can Mineralog 46:981–990. https://doi.org/10.3749/canmin.46.4.981

  • Kjarsgaard BA, Hamilton DL (1989) Liquid immiscibility and the origin of alkali poor carbonatites. Mineral Mag 52:43–55

    Article  Google Scholar 

  • Krishnamurthy P (1977) On some geochemical aspects of Sevathur carbonatite complex, North Arcot district, Tamil Nadu. J Geol Soc India 18:265–274

    Google Scholar 

  • Krishnamurthy P (2019) Carbonatites of India. J Geol Soc India 94(2):117–138

    Article  Google Scholar 

  • Kumar A, Gopalan K (1991) Precise Rb-Sr age and enriched mantle source of Sevvattur carbonatites, Tamil Nadu, south India. Current Sci 60:653–654

    Google Scholar 

  • Kumar A, Nirmal Charan S, Gopalan K, Macdougall JD (1998) A long lived enriched mantle source for two Proterozoic carbonatite complexes from southern India. Geochim Cosmochim Ac 62:515–523

    Article  Google Scholar 

  • Le Bas MJ (2008) Fenites associated with carbonatites. Can Mineral 46:915–932

    Article  Google Scholar 

  • Le Bas MJ, Ba-bttat MAO, Taylor RN, Milton JA, Windley BF, Evins PM (2004) The carbonatite-marble dykes of Abyan Province, Yemen Republic: The mixing of mantle and crustal carbonate materials revealed by isotope and trace element analysis. Mineral Petrol 82:105–135

    Article  Google Scholar 

  • Lee W, Wyllie PJ (1997) Liquid Immiscibility in the Join NaAlSiO4-NaAlSi3O8-CaCO3 at 1 GPa: Implications for Crustal Carbonatites. J Petrol 38:1113–1135

    Article  Google Scholar 

  • Lee W, Wyllie P (1998) Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO–(MgO + FeO*–(Na2O + K2O)–(SiO2 + Al2O3 + TiO2)–CO2. J of Petrol 39:495–517

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ, Rossman GR (1994) CO rich glass round calcite crystals, and no liquid immiscibility in the system CaO–SiO2–CO2 at 2·5 GPa. Am Mineral 79:1135–1144

    Google Scholar 

  • Li XC, Zhou MF (2017) Hydrothermal alteration of monazite-(Ce) and chevkinite-(Ce) from the Sin Quyen Fe-Cu-LREE-Au deposit, northwestern Vietnam. Am Mineral 102:1525–1541

    Article  Google Scholar 

  • Li XC, Zhou MF (2018) The nature and origin of hydrothermal REE mineralization in the Sin Quyen deposit, northwestern Vietnam. Econ Geol 113:645–673

    Article  Google Scholar 

  • Linnen RL, Samson IM, Williams-Jones AE, Chakhmouradian AR (2014) Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr Deposits. Treatise Geochem 543–568

  • Liu Y, Chakhmouradian AR, Hou ZQ, Song WL, Kynický J (2019) Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): Insights from mineralogy, fluid inclusions, and trace-element geochemistry. Mineral Dep 54:701–718

    Article  Google Scholar 

  • Liu Y, Hou ZQ (2017) A synthesis of mineralization styles with an integrated genetic model of carbonatite–syenite hosted REE deposits in the Cenozoic Mianning–Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. J Asian Earth Sci 137:35–79

    Article  Google Scholar 

  • Macdonald R, Bagiński B, Belkin HE, Stachowicz M (2019) Review-Composition, paragenesis, and alteration of the chevkinite group of minerals. Am Mineral 104:348–369

    Article  Google Scholar 

  • Macdonald R, Belkin HE, Wall F, Bagiński B (2009) Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks. Mineral Mag 73:777–796

    Article  Google Scholar 

  • Merlet C (1992) Quantitative Electron Probe Microanalysis: New Accurate CI>(pz) Description. Microchima Ac 107–115

  • Merlet C (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchima Ac 114:363–376

    Article  Google Scholar 

  • Migdisov AA, Williams-Jone AE, Wagner T (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride bearing aqueous solutions at temperatures up to 300°C. Geochim Cosmochim Ac 73:7087–7109

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2008) A spectrophotometric study of Nd (III), Sm (III) and Er (III) complexation in sulfate-bearing solutions at elevated temperatures. Geochim Cosmochim Ac 72:5291–5303

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineral Dep 49:987–997

    Article  Google Scholar 

  • Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Can Mineral 43:2049–2068

    Article  Google Scholar 

  • Mitchell RH (2015) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol Rev 64:626–641

    Article  Google Scholar 

  • Mitchell R, Chudy T, McFarlane CRM, Wu FY (2017) Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British Columbia, Canada) and mineralogy of associated silicate rocks. Lithos 286–287:75–91

    Article  Google Scholar 

  • Möller A, Geisler T, Schleicher H, Todt W, Viladkar SG, Subramanian V (2001) Inter-relationship between carbonatite–pyroxenite–syenite complexes of southern India. Symposium on Carbonatites and Associated Alkaline Rocks and Field Workshop on Carbonatites of Tamil Nadu, Chennai, India. pp 15 – 16 (abstract)

  • Morogan V (1994) Ijolite versus carbonatite as sources of fenitization. Terra Nova 6:166–176

    Article  Google Scholar 

  • Nagabhusanam B, Durai raju S, Mundra KL, Rai SD, Purohit RK, Verma MB, Nanda LK, (2018) LREE–Nb Mineralization in the South Western Part of Ambadongar Carbonatite Complex, Chhota Udepur District, Gujarat. India Current Sci 114(8):1608–1610

    Article  Google Scholar 

  • Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Ac 52:1–17

    Article  Google Scholar 

  • Pandit MK, Sial AN, Sukumaran GB, Pimentel MM, Ramasamy AK, Ferreira VP (2002) Depleted and enriched mantle sources for Paleo- and Neoproterozoic carbonatites of southern India: Sr, Nd, C-O isotopic and geochemical constraints. Chem Geol 189(1–2):69–89

    Article  Google Scholar 

  • Pandur K, Kontak DJ, Ansdell KM (2014) Hydrothermal evolution in the Hoidas Lake vein-type REE deposit, Saskatchewan, Canada: constraints from fluid inclusion microthermometry and evaporate mound analysis. Can Mineral 52:717–744

    Article  Google Scholar 

  • Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Güner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geotherm Res 44:189–229

  • Rakkiannan S, Anbarasu K (2019) Trace and Rare Earth Elements enriched carbonatite rocks of Pakkanadu alkaline complex, South India. Intern J Sci Tech Res 8(11):2664–2670

    Google Scholar 

  • Rampilova M, Doroshkevich A, Viladkar SG, Zubakova E (2021) Mineralogy of Dolomite Carbonatites of Sevathur Complex, Tamil Nadu. India Minerals 11(355):1–19

    Google Scholar 

  • Randive K, Meshram T (2020) An Overview of the Carbonatites from the Indian Subcontinent. Open Geosci 12:85–116

    Article  Google Scholar 

  • Rankin AH (2005) Carbonatite-associated rare earth metal deposits: composition and evolution of ore-forming fluids: the fluid inclusion evidence. Short Course Notes 17. Geol Assoc Canada pp 299–314

  • Renjith ML, Santosh M, Satyanarayanan M, Subba Rao DV, Tang L (2016) Multiple rifting and alkaline magmatism in southern India during Paleoproterozoic and Neoproterozoic. Tectonophysics 680:233–253

    Article  Google Scholar 

  • Roden MF, Murthy VR (1985) Mantle Metasomatism. Ann Rev Earth Planet Sci 13:269–296

    Article  Google Scholar 

  • Sadiq M, Umrao RK (2020) Nb-Ta-rare earth element mineralization in titaniferous laterite cappings over Sung Valley ultramafic rocks in Meghalaya, India. Ore Geol Rev 120. https://doi.org/10.1016/j.oregeorev.2020.103439

  • Samson IM, Wood SA (2005) The rare earth elements: behavior in hydrothermal fluids and concentration in hydrothermal mineral deposits, exclusive of alkaline settings. Geol Assoc Can Short Course 17:269–297

    Google Scholar 

  • Santosh M, Shaji E, Tsunogae T, Ram Mohan M, Horie K (2013) Suprasubduction zone ophiolite from Agali hill: Petrology, zircon SHRIMP U-Pb geochronology, geochemistry and implications for Neoarchean plate tectonics in southern India. Precam Res 231:301–324

    Article  Google Scholar 

  • Santosh M (2020) The Southern Granulite Terrane: A synopsis. Episodes 43(1):109–123

    Article  Google Scholar 

  • Schandl ES, Gorton MP (2004) A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Econ Geol 99:1027–1035

    Article  Google Scholar 

  • Schleicher H, Kramm U, Pernicka E, Schidlowski M, Schmidt F, Subramanian V, Todt W, Viladkar SG (1998) Enriched sub-continental upper mantle beneath southern India; evidence from Pb, Nd, Sr and C-O isotopic studies on Tamil Nadu Carbonatites. J Petrol 39:1765–1785

    Article  Google Scholar 

  • Schleicher H, Todt W, Viladkar SG, Schmidt F (1997) Pb/Pb age determinations on the Newania and Sevattur carbonatites of India: evidence for multi-stage histories. Chem Geol 140:261–273

    Article  Google Scholar 

  • Seifert W, Kämpf H, Wasternack J (2000) Compositional variation in apatite, phlogopite, and other accessory minerals of the ultramafic Delitzsch complex, Germany: implications for cooling history of carbonatites. Lithos 26:21–35

    Google Scholar 

  • Semenov EI, Upendran R, Subramanian V (1978) Rare earth minerals of carbonatites of Tamil Nadu. J Geol Soc India 19(12):550–557

    Google Scholar 

  • Sesha Sai VV, Sengupta SK (2017) Resorbed forsterite in the carbonatite from the Cretaceous Sung Valley Complex, Meghalaya, NE India – Implications for crystal-melt interaction from textural studies. J Indian Geoph Un 21(4):292–297

    Google Scholar 

  • Sheard ER, Williams-Jones AE, Heiligmann M, Pederson C, Trueman DL (2012) Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor lake rare metal deposit, Northwest Territories, Canada. Econ Geol 107:81–104

    Article  Google Scholar 

  • Shimazaki H, Miyawaki R, Yokoyama K, Matsubara S, Yang Z, Shigeoka M (2008) A reconnaissance study on minerals from the Bayan Obo Nb-REE-Fe deposit, Inner Mongolia, China. Bull Nat Mus Natr and Sci 34:1–26

    Google Scholar 

  • Shu X, Liu Y (2019) Fluid inclusion constraints on the hydrothermal evolution of the Dalucao Carbonatite-related REE deposit, Sichuan Province, China. Ore Geol Rev 107:41–57

    Article  Google Scholar 

  • Shu X, Liu Y, Li D (2020) Fluid inclusions as an indicator for REE mineralization in the Lizhuang deposit, Sichuan Province, Southwest China, J Geochem Expl 213:106518, https://doi.org/10.1016/j.gexplo.2020.106518

  • Singh Y (2020) Rare Earth Element Resources: Indian Context. Soc Earth Sci Ser, Springer Nature Switzerland AG, pp 395. https://doi.org/10.1007/978-3-030-41353-8

  • Smith MP, Henderson P (2000) Preliminary fluid inclusion constraints on fluid evolution in the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Econ Geol 95:1371–1388

    Article  Google Scholar 

  • Smith MP, Moore K, Kavecsánszki D, Finch AA, Kynicky J, Wall F (2016) From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geosci Front 7:315–334

    Article  Google Scholar 

  • Song WL, Xu C, Smith MP, Kynický J, Huang KJ, Wei CW, Li Z, Shu QH (2016b) Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China. Sci Rep 6:373–377

    Article  Google Scholar 

  • Song WL, Xu C, Veksler IV, Kynicky J (2016a) Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization. Contrib Mineral Petrol 171:1–12

    Article  Google Scholar 

  • Srivastava RK, Hall RP (1995) Tectonic setting of Indian carbonatites. In: Srivastava Rajesh K, Chandra R (eds) Magmatism in relation to diverse tectonic settings. Oxford and IBH Publ, New Delhi, pp 135–154

    Google Scholar 

  • Srivastava RK (1998) Petrology of the Proterozoic alkaline carbonatite complex of Samalpatti, District Dharmapuri, Tamil Nadu. J Geol Soc India 51:233–244

    Google Scholar 

  • Stoppa F, Rosatelli G, Wall F, Jeffries T (2005) Geochemistry of carbonatite-silicate pairs in nature: a case history from Central Italy. Lithos 85:26–47

    Article  Google Scholar 

  • Stoppa F, Schiazza M (2013) An overview of monogenetic carbonatitic magmatism from Uganda, Italy, China and Spain: volcanologic and geochemical features. J South Am Earth Sci 41:140–159

    Article  Google Scholar 

  • Subramanian V, Viladkar SG, Upendran R (1978) Carbonatite-Alkali complex of Samalpatti, Dharmapuri district, Tamil Nadu. J Geol Soc India 19:206–216

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Norry MJ (Ed), Saunders A.- D.Geological Society London Special Publication, Magmatism in the Ocean Basins, 313–345

  • Suryanarayana Rao C, Narayan Das GR, Setty BK, Perumal NVAS (1978) Radioactive carbonatites of Pakkanadu and Mulakkadu, Salem district. Tamil Nadu J Geol Soc India 19(2):53–63

    Google Scholar 

  • Sweeney RJ (1994) Carbonatite melt compositions in the earth‘s mantle. Earth Planet Sci Lett 128:259–270

    Article  Google Scholar 

  • Teiber H, Marks MAW, Arzamastsev A, Wenzel T, Markl G (2015) Compositional variation in apatite from various host rocks: clues with regards to source composition and crystallization conditions. Neues Jb Mineral Abh 192(2):151–167

    Article  Google Scholar 

  • Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate– carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet Sci Lett 267:17–31

    Article  Google Scholar 

  • Trofanenko J, Williams-Jones AE, Simandl GJ, Migdisov AA (2016) The nature and origin of the REE mineralization in the Wicheeda Carbonatite, British Columbia, Canada. Econ Geol 111:199–223

    Article  Google Scholar 

  • Van Wambeke L (1971) Pandaite, baddeleyite and associated minerals from the Bingo niobium deposit, Kivu, Democratic Republic of Congo. Mineral Dep 6:153–155

    Article  Google Scholar 

  • Van Wambeke L (1978) Kalipyrochlore, a new mineral of the pyrochlore group. Am Mineral 63:528–530

    Google Scholar 

  • Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate-carbonate liquid systems: An initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104

    Article  Google Scholar 

  • Verplanck PL (2017) The Role of Fluids in the Formation of Rare Earth Element Deposits. Pro Earth Planet Sci 17:758–761

    Article  Google Scholar 

  • Verplanck PL, Mariano AN, Mariano AJ (2016) Rare earth element ore geology of carbonatites. Rare Earth Elem. Crit Elem Ore Dep 18:5–32

    Google Scholar 

  • Viladkar SG, Dulski P (1986) Rare earth element abundances in carbonatites, alkaline rocks and fenites of the Ambadungar, Gujarth, India. N Jb Miner Mh H1:37–48

    Google Scholar 

  • Viladkar SG, Subramanian V (1995) Mineralogy and geochemistry of the carbonatites of the Sevathur and Samalpatti complexes, Tamil Nadu. J Geol Soc India 45:505–517

    Google Scholar 

  • Viladkar SG, Sorokhtina NV, Senin VG (2009) The Zr-Ti mineralization in carbonatites of the Samchampi alkaline carbonatite complex, Assam, India. XXVI International Conference Geochemistry Of Magmatic Rocks School Geochemistry Of Alkaline Rocks Moscow, Russia, pp 11−15

  • Viladkar SG, Ramesh R (2014) Stable Isotope geochemistry of some Indian Carbonatites: Implications for magmatic processes and post-emplacement hydrothermal alteration. Comunicações Geológicas 101(1):55–62

    Google Scholar 

  • Vladykin NV, Viladkar SG, Miyazaki T, Mohan RV (2008) Geochemistry of benstonite and associated carbonatites of Sevathur, Jogipatti and Samalpatti, Tamil Nadu, South India and Murun massif, Siberia. J Geol Soc India 72:312–324

    Google Scholar 

  • Wall F, Mariano AN (1996) Rare earth minerals in carbonatites: a discussion centred on the Kangankunde Carbonatite, Malawi. In: Jones, A.P, Wall, Frances, and Williams, C.T, eds, Rare earth minerals – chemistry, origin and ore deposits. New York, Chapman and Hall, The Mineral Soc Series 7:193−225

  • Wall F, Zaitsev AN (2004) Rare earth minerals in Kola carbonatites. Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province. Mineral Soc Series 10:341–373

    Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Lett Nat 335:343–346

    Article  Google Scholar 

  • Wang D, Yang J, Yan S, Xu J, Chen Y, Pu G, Luo Y (2001) A special orogenic-type rare earth element deposit in Maoniuping, Sichuan, China: geology and geochemistry. Res Geol 51:177–188

    Article  Google Scholar 

  • Wang ZY, Fan HR, Zhou L, Yang KF, She HD (2020) Carbonatite-Related REE Deposits: An Overview. Minerals 10:965. https://doi.org/10.3390/min10110965

  • Weng ZH, Jowitt SM, Mudd GM, Haque N (2015) A detailed assessment of global rare earth element resources: opportunities and challenges. Econ Geol 110:1925–1952

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilization of the rare earth elements - A tale of “bceria” and “byttria”. Elements 355–360

  • Wilshire HG (1984) Mantle metasomatism: the REE story. Geology 12:395–398

    Article  Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions and element distribution. In: Bell K (ed) Carbonatites - Genesis and Evolution. Unwin Hyman, London, pp 1–13

    Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008) Carbonatite occurrences of the world: Map and database. Geological Survey of Canada, Open File 5796

  • Wu B, Hu YQ, Bonnetti C, Xu C, Wang RC, Zhang ZS, Li ZY (2021) Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, central China and its implications for Nb mineralization. Ore Geol Rev 132. https://doi.org/10.1016/j.oregeorev.2021.104059

  • Xie YL, Hou ZQ, Yin SP, Simon CD, Xu JH, Tian SH, Xu WY (2009) Continuous carbonatitic melt–fluid evolution for a REE mineralization system: evidence from inclusions in Maoniuping REE deposit in thewestern Sichuan, China. Ore Geol Rev 36:89–104

    Article  Google Scholar 

  • Xie YL, Li YX, Hou ZQ, Cooke DR, Danyushevsky L, Dominy SC, Yin SP (2015) A model for carbonatite hosted REE mineralisation - the Mianning–Dechang REE belt, western Sichuan Province, China. Ore Geol Rev 70:595–612

    Article  Google Scholar 

  • Xu C, Kynicky J, Chakhmouradian AR, Campbell IH, Allen CM (2010) Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos 118:145–155

    Article  Google Scholar 

  • Xu C, Kynický J, Chakhmouradian AR, Li X, Song WL (2015) A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen: Miaoya rare-metal deposit, central China. Lithos 227:107–121

    Article  Google Scholar 

  • Xu J, Yang G, Li G, Wu Z, Shen G (2008) Dingdaohengite-(Ce) from the Bayan Obo REE-Nb-Fe Mine, China: Both a true polymorph of perrierite-(Ce) and a titanic analog at the C1 site of chevkinite subgroup. Am Mineral 93:740–744

    Article  Google Scholar 

  • Yang ZX, Williams-Jones AE, Pu GP (2000) Geological features of Maoniuping REE deposit, Sichuan, China. Mineral Petrol 20:28–34

    Google Scholar 

  • Ying JF, Zhou XH, Zhang HF (2004) Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China and implications for their petrogenesis and enriched mantle source. Lithos 75:413–426

    Article  Google Scholar 

  • Zaitsev AN, Wall F, Le Bas MJ (1998) REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution. Mineral Mag 62(2):225–250

    Article  Google Scholar 

  • Zhang D, Liu Y, Pan J, Dai T, Bayless R (2019) Mineralogical and geochemical characteristics of the Miaoya REE prospect, Qinling orogenic Belt, China: Insights from Sr-Nd-C-O isotopes and LA-ICPMS mineral chemistry. Ore Geol Rev 110:102932, https://doi.org/10.1016/j.oregeorev.2019.05.018

  • Zheng X, Liu Y (2019) Mechanisms of element precipitation in carbonatite-related rare earth element deposits: evidence from fluid inclusions in the Maoniuping deposit, Sichuan Province, southwestern China. Ore Geol Rev 107:218–238

    Article  Google Scholar 

Download references

Acknowledgements

Authors extend sincere thanks to the Additional Director General, Geological Survey of India, Southern Region for according permission to publish this work. SNM extend his gratitude to Direndra Kumar Choudhury, P. K Sinha for providing an opportunity to work in Pakkanadu area. The Deputy Director General, State Unit: Tamil Nadu and Puducherry and Debakanta Mishra are thanked for extending logistic facilities during field visit. The authors acknowledge the helps rendered by Samir Debnath, Ravikant Gupta and Puspanjali S. during preparation of manuscript. The authors also extend their sincere gratitude to Rajesh K. Srivastava, an anonymous reviewer, Guest Editor Kirtikumar R. Randive, and Chief Editor Lutz Nasdala for their critical scrutiny and constructive suggestions, which immensely helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Meshram.

Additional information

Editorial handling: K. R. Randive

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 1064 KB)

Supplementary file2 (XLSX 78 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatro, S.N., Meshram, T. & Korakappa, M. Mineralogy of Pakkanadu carbonatites and associated rocks, South India: constraints on evolution and evidences for REE enrichment. Miner Petrol 117, 595–617 (2023). https://doi.org/10.1007/s00710-023-00843-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-023-00843-0

Keywords

Navigation