Skip to main content
Log in

Estimation of coda Q for the eastern Indian craton

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

A Correction to this article was published on 28 May 2019

This article has been updated

Abstract

We herein present new frequency-dependent coda-\(Q\,\,(Q_\mathrm{c})\) relations (\(Q_\mathrm{c} =Q_{\text {0}}f ^{n})\) (frequency ranges between 2 and 18 Hz) for three regions of the eastern Indian craton (EIC), viz., the Singhbhum Odisha craton (SOC) and the Eastern Ghat mobile belt (EGMB), comprising the Mahanadi basin and the Chotanagpur granitic gneissic terrain (CGGT). The frequency-dependent coda-\(Q_\mathrm{c}\) relations are obtained through the single backscattering model for coda waves (\(Q_\mathrm{c})\) of local earthquakes which are recorded on 15 three-component broadband seismograph stations in the regions. In this work, we pay special attention to test the lapse time (\(t_\mathrm{L})\) dependency of coda-Q (\(Q_\mathrm{c})\) estimates for the three regions. Lapse time signifies the sample area of the coda wave of the study region. Generally, the sample area increases with lapse time. To test the lapse time (\(t_\mathrm{L})\) dependency, nine different lapse time windows (\(t_\mathrm{L})\) from 10 to 90 s with 10 s interval are considered. On the ground of estimated poor correlation coefficients, only six lapse time windows (\(t_\mathrm{L})\) from 40 to 90 s with 10 s interval are considered. Our results suggest more heterogeneity in EGMB than that of the SOC and CGGT region. Estimates of \(Q_{\text {0}}\) and n for the three regions of EIC (SOC, EGMB and CGGT) are found to be consistent with the results of \(Q_{\text {0}}\) and n for mildly active less heterogeneous seismic zones in different parts of the world. By assuming entirely intrinsic attenuation characteristics, actual hazard parameters, i.e., extinction distance and anelastic attenuation coefficients are also computed for the three regions. The extinction distance (\(L_\mathrm{e})\) provides an idea of the distribution of scatterers in the lithosphere and anelastic attenuation coefficients signify the anelasticity of the medium, i.e., fluid movement and grain distribution. The estimate of extinction distance and attenuation coefficients suggests that for all three study regions, the upper mantle is relatively less heterogeneous and attenuation below 110–126 km depth is also comparatively lower. Coda Q indicates the degree of fracture and heterogeneity in the lithosphere related to seismicity. A higher estimate of \(Q_{\text {0}}\) values in the Archaean SOC region and the Proterozoic CGGT region is found when compared with that of the sedimentary-rich EGMB. It can be inferred that seismically less active cratons in general comprise high \(Q_{\text {0}}\) values, whereas the sedimentary-rich EGMB is more attenuative, characterised by a low coda \(Q_{\text {0}}\) value. Moreover, it is found that the estimated \(Q_{\text {0}}\) values for CGGT region are a little bit higher than that for the SOC region. This can be explained as a comparatively less disturbed and less heterogonous land mass that is present in the CGGT region as compared to the SOC region, which comprises different minerals, ore bodies, fault scarps and shear zones. The developed \(Q_\mathrm{c}\) relation for the EIC region could be useful for the study of hazards and ground motion prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Change history

  • 28 May 2019

    In the original version of this article, third author’s affiliation was incorrectly represented. The corrected affiliation is given below.

References

  • Acharya S 1984 Stratigraphic and structural evolution of the rocks of the iron ore basins in Singhbhum–Orissa Iron Ore Province, India; CEISM Semin., Ind. J. Earth Sci. 1 19–28.

  • Acharyya S K, Gupta A and Orihashi Y 2010a New U-Pb zircon ages from Palaeo–Mesoarchaean TTG gneisses of the Singhbhum Craton, eastern India; Geochem. J. 44 81–88.

  • Acharyya S K, Gupta A and Orihashi Y 2010b Neoarchaean–Palaeoproterozoic stratigraphy of the Dhanjori basin, Singhbhum craton, Eastern India: And recording of a few U–Pb zircon dates from its basal part; J. Asian Earth Sci. 39 527–536.

    Article  Google Scholar 

  • Aki K 1969 Analysis of the seismic coda of local earthquakes as scattered waves; J. Geophys. 74 615–631.

    Article  Google Scholar 

  • Aki K 1980a Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz; Phys. Earth Planet. Inter. 21 50–60.

    Article  Google Scholar 

  • Aki K 1980b Scattering and attenuation of shear waves in the lithosphere; J. Geophys. Res. 85 6496–6504.

    Article  Google Scholar 

  • Aki K 1981 Attenuation of short-period seismic waves in lithosphere; In: Proceedings of the Nato Advanced Institute, August 1980, Oslo, Norway.

  • Aki K and Chouet B 1975 Origin of Coda waves: Source, attenuation and scattering effects; J. Geophys. Res. 80 3322–3342.

    Article  Google Scholar 

  • Aleqabi G I and Wysession M E 2006 \(QLg\) distribution in the Basin and Range Province of the western United States; Bull. Seismol. Soc. Am. 96 348–354.

    Article  Google Scholar 

  • Allen T I, Cummins P R, Dhu T and Schneider J F 2007 Attenuation of ground-motion spectral amplitudes in southeastern Australia; Bull. Seismol. Soc. Am. 97 1279–1292.

    Article  Google Scholar 

  • Barros L V, Assumpco M, Quintero R and Ferreira V M 2011 Coda wave attenuation in the Parecis Basin, Amazon Craton, Brazil: Sensitivity to basement depth; J. Seismol. 15 391–409.

    Article  Google Scholar 

  • Biswas K and Mandal P 2017 Modeling of source parameters and moment tensors of local earthquakes occurring in the Eastern Indian Shield; J. Geol. Soc. India 89 619–630, https://doi.org/10.1007/s12594-017-0671-2.

    Article  Google Scholar 

  • Biswas K, Kumar M and Mandal P 2016 Lapse time dependent coda-Q (\(Q_{c})\) in the Kachchh, rift zone, Gujarat, India; Nat. Hazards 81 1589–1610, https://doi.org/10.1007/s11069-016-2147-x.

    Article  Google Scholar 

  • Chandra U 1977 Earthquakes of Peninsular India – A seismotectonic study; Bull. Seismol. Soc. Am. 67(5) 1387–1413.

  • Chetty T R K and Murthy D S N 1994 Regional tectonic framework of the Eastern Ghats Mobile Belt: A new interpretation; In: Proceedings of the workshop on Eastern Ghat Mobile Belt, Geol. Surv. Ind. 44 39–50.

  • Chung J, Chen Y and Shin T 2009 Spatial distribution of coda \(Q\) estimated from local earthquakes in Taiwan area; Earth Planet. Space 611 1077–1088.

    Article  Google Scholar 

  • Dainty A M and Toksoz M N 1981 Seismic codas on the earth and the moon a comparison; Phys. Earth Planet. Inter. 26 250–260.

    Article  Google Scholar 

  • Dasovic I, Herak M and Herak D 2013 Coda-\(Q\) and its lapse time dependence analysis in the interaction zone of the Dinarides, the Alps and the Pannonian basin; Phys. Chem. Earth 63 47–54.

    Article  Google Scholar 

  • Dunn J A 1929 The geology of north Singhbhum; Mem. Geol. Soc. India 54 166.

    Google Scholar 

  • Fehler M, Hoshiba M, Sato H and Obara K 1992 Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance; Geophys. J. Int. 108 787–800.

    Article  Google Scholar 

  • Frankel A D and Wennerberg L 1987 Energy-flux model of seismic coda: Separation of scattering and intrinsic attenuation; Bull. Seismol. Soc. Am. 771 223–1251.

    Google Scholar 

  • Frankel A, Mcgarr A, Bicknell J, Mri J, Seeber L and Cranswick E 1990 Attenuation of high-frequency shear waves in the crust: Measurements from New York State, South Africa and Southern California; J. Geophys. Res. 95 17441–17457.

    Article  Google Scholar 

  • Gao L S, Lee L C, Biswas N N and Aki K 1983 Comparison of the effects between single and multiple scattering on Coda waves for local earthquakes; Bull. Seismol. Soc. Am. 73 377–389.

    Google Scholar 

  • Ghosh S K and Sengupta S 1990 The Singhbhum shear zone: Structural transition and a kinematic model; Proc. Indian Acad. Sci. 1 229–247.

    Google Scholar 

  • Giampiccolo E, Tusa G, Langer H and Gresta S 2002 Attenuation in Southeastern Sicily (Italy) by applying different coda methods; J. Seismol. 6 487–501.

    Article  Google Scholar 

  • Gupta S, Mohanty W K, Mandal A and Misra S 2014 Ancient terrane boundaries as probable seismic hazards: A case study from the northern boundary of the Eastern Ghats Belt, India; Geosci. Front. 5 17–24.

    Article  Google Scholar 

  • Gusev A A 1995 Vertical profile of turbidity and coda Q; Geophys. J. Int. 123 665–672.

    Article  Google Scholar 

  • Havskov J and Ottemoller L 2003 SEISAN: The earthquake analysis softwares for Windows, Solaris and Linux, Version 8.0; Institute of Solid Earth Physics, University of Bergen, Norway.

  • Havskov J, Malone S, Mcclurg D and Crosson R 1989 Coda \(Q\) for the state of Washington; Bull. Seismol. Soc. Am. 79 1024–1038.

    Google Scholar 

  • Havskov J, Sørensen M, Vales D, Özyazıcıoğlu M, Sánchez G and Li B 2016 Coda \(Q\) in different tectonic areas, influence of processing parameters; Bull. Seismol. Soc. Am. 106(3) 956–970.

    Article  Google Scholar 

  • Hazarika P, Kumar M R and Kumar D 2013 Attenuation character of seismic waves in Sikkim Himalaya; Geophys. J. Int. 195 544–557.

    Article  Google Scholar 

  • Herak M 1991 Lapse time dependent \(Q_{c}\)-spectra observed in the Dinarides region (Yugoslavia); Phys. Earth Planet. Inter. 67 303–312.

    Article  Google Scholar 

  • Herraiz M and Espinosa A F 1987 Coda waves: A review; Pure Appl. Geophys. 125 499–577.

    Article  Google Scholar 

  • Herrmann R B 1980 Q estimation using the coda of local earthquakes; Bull. Seismol. Soc. Am. 70 447–468.

    Google Scholar 

  • Hoshiba M 1991 Simulation of multiple scattered coda wave excitations based on the energy conservation law; Phys. Earth Planet. Inter. 67 123–136.

    Article  Google Scholar 

  • Hoshiba M 1993 Separation of scattering attenuation and intrinsic absorption in Japan with the multiple lapse time window analysis from full seismogram envelope; J. Geophys. Res. 98(15) 809–824.

    Google Scholar 

  • Jin A and Aki K 1988 Spatial and temporal correlation between coda \(Q\) and seismicity in China; Bull. Seismol. Soc. Am. 78 741–769.

    Google Scholar 

  • Kayal J R, Srivastava V K, Bhattacharya S N, Khan P K and Chatterjee R 2009 Source parameters and focal mechanisms of local earthquakes: Single broadband observatory at ISM Dhanbad; J. Geol. Soc. India 74 413–419.

    Article  Google Scholar 

  • Khan P K, Biswas B, Samdarshi P and Prasad R 2011 Seismicity and the coda-\(Q\) variation in eastern Indian shield region; Indian J. Geosci. 65(2) 43–50.

    Google Scholar 

  • Khan P K, Bhukta K and Tarafder G 2016 Coda \(Q\) in Eastern Indian Shield; Act. Geodt. Geophys. 51 333–346, https://doi.org/10.1007/s40328-015-0129.

  • Kopnichev Y F 1977 The role of multiple scattering in the formation of a seismogram’s tail; Izv. Acad. Sci. USSR, Phy. Solid Earth 13 394–398.

  • Kvamme L B and Havskov J 1989 Q in Southern Norway; Bull. Seismol. Soc. Am. 79 1575–1588.

    Google Scholar 

  • Mak S, Chan L S, Chandler A M and Koo R C H 2004 Coda \(Q\) estimates in the Hong Kong region; J. Asian Earth Sci. 24 127–136.

    Article  Google Scholar 

  • Mandal P and Biswas K 2016 Teleseismic receiver function modeling of the eastern Indian craton; Phys. Earth Planet. Inter. 268 1–14, https://doi.org/10.1016/j.pepi.2016.07.002.

    Article  Google Scholar 

  • Mandal P, Jainendra S, Joshi S, Kumar S, Bhunia R and Rastogi B K 2004 Low coda \(Q_{c}\) in the epicentral region of the 2001 Bhuj earthquake of Mw 7.7; Pure Appl. Geophys. 161 1635–1654.

  • Margerin L, Campillo M and Van Tiggelen B 1998 Radiative transfer and diffusion of waves in a layered medium, new insight into coda \(Q\); Geophys. J. Int. 134 247–258.

    Article  Google Scholar 

  • Mazumder R, Van Loon A J, Mallik L, Reddy S M, Arima M, Altermann W, Eriksson P G and De S 2012 Mesoarchaean-Palaeoproterozoic stratigraphic record of the Singhbhum crustal province, eastern India: A synthesis; In: Palaeoproterozoic of India (eds) Mazumder R and Saha D, Geol. Soc. London 365 31–49.

  • Misra S 2006 Precambrian chronostratigraphic growth of Singhbhum-Orissa Craton, Eastern Indian Shield: An alternative model; J. Geol. Soc. India 67 356–378.

    Google Scholar 

  • Mitchell B J 1981 Regional variation and frequency dependence of \(Q\) in the crust of the United States; Bull. Seismol. Soc. Am. 71 1531–1538.

    Google Scholar 

  • Mitchell B 1995 Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation; Rev. Geophys. 33 441–462.

    Article  Google Scholar 

  • Mukhopadhyay S, Tyagi C and Rai S S 2006 The attenuation mechanism of seismic waves in northwestern Himalayas; Geophys. J. Int. 167 354–360.

    Article  Google Scholar 

  • Mukhopadhayay S and Tyagi C 2007 Lapse time and frequency-dependent attenuation characteristics of coda waves in the Northwestern Himalayas; J. Seismol. 11 149–158.

    Article  Google Scholar 

  • Mukhopadhyay J, Beukes N J, Armstrong R A, Zimmermann U, Ghosh G and Medda R A 2008 Dating the oldest Greenstone in India: A 3.51 Ga precise U–Pb SHRIMP Zircon Age for Dacitic Lava of the Southern Iron Ore Group, Singhbhum Craton; J. Geol. 116 449–461.

    Article  Google Scholar 

  • Nuttli O W 1973 Seismic wave attenuation and magnitude relations for eastern North America; J. Geophys. Res. 78 876–885.

    Article  Google Scholar 

  • Oldham T 1883 A catalogue of Indian earthquakes from the earliest times to the end of 1869 A.D.; Mem. Geol. Surv. India 19(3) 163–215.

  • Padhy S 2009 Characteristics of body-wave attenuations in the Bhuj crust; Bull. Seismol. Soc. Am.  99 3300–3313.

    Article  Google Scholar 

  • Padhy S and Subhadra N 2010 Attenuation of high-frequency seismic waves in northeast India; Geophys. J. Int. 181 453–467.

    Article  Google Scholar 

  • Parvez I A, Sutar A K, Mridula M, Mishra S K and Rai S S 2008 Coda \(Q\) estimates in the Andaman Islands using local earthquakes; Pure Appl. Geophys. 165 1861–1878.

    Article  Google Scholar 

  • Paul A, Gupta S C and Pant C 2003 Coda \(Q\) estimates for Kumaun Himalaya; Proc. Indian Nat. Sci. Acad. (Earth Planet. Sci.) 112 569–576.

  • Pujades L, Ugalde A, Canas J A, Navarro M, Badal F J and Corchete V 1997 Intrinsic and scattering attenuation form observed seismic codas in the Almeria Basin (Southeastern Iberian Peninsula); Geophys. J. Int. 129 281–291.

    Article  Google Scholar 

  • Pulli J J 1984 Attenuation of coda waves in New England; Bull. Seismol. Soc. Am. 74 1149–1166.

    Google Scholar 

  • Rautian T G and Khalturin V I 1978 The use of the coda for determination of earthquake source spectrum; Bull. Seismol. Soc. Am. 68 923–948.

    Google Scholar 

  • Roecker S W, Tucker B, King J and Hatzfeld D 1982 Estimates of \(Q\) in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes; Bull. Seismol. Soc. Am. 72 129–149.

    Google Scholar 

  • Saha A K 1994 Crustal evolution of Singhbhum – North Orissa, Eastern India; Mem. Geol. Soc. India 27 341.

  • Sarkar A N 1982 Precambrian tectonic evolution of eastern India: A model of converging microplates; Tectonophys. 86 363–397.

    Article  Google Scholar 

  • Sarkar A N and Chakraborty D K 1982 One orogenic belt or two? A structural reinterpretation supported by Landsat data products of the Precambrian metamorphics of Singhbhum, Eastern India; Photogrammetria 37 185–201.

    Article  Google Scholar 

  • Sato H 1977 Energy propagation including scattering effects single isotropic scattering approximation; J. Geophys. Res. 25 27–41.

    Google Scholar 

  • Sato H 1988 Fractal interpretation of the linear relation between logarithms of maximum amplitude and hypocentral distance; Geophys. Res. Lett. 15 373–375.

    Article  Google Scholar 

  • Sato H and Fehler M C 1998 Seismic wave propagation and scattering in the heterogeneous earth; Springer-Verlag, New York.

    Book  Google Scholar 

  • Sharma B, Gupta A K, Devi D K, Kumar D, Teotia S S and Rastogi B K 2008 Attenuation of high-frequency seismic waves in Kachchh Region, Gujarat, India; Bull. Seismol. Soc. Am. 98 2325–2340.

    Article  Google Scholar 

  • Singh S and Hermann R 1983 Regionalization of crustal coda \(Q\) in the continental United States; J. Geophys. Res. 88 527–538.

    Article  Google Scholar 

  • Singh S K, Garcia D, Pacheco J F, Valenzuela R, Bansal B K and Dattatrayam R S 2004 Q of the Indian Shield; Bull. Seismol. Soc. Am94 1564–1570.

    Article  Google Scholar 

  • Tait J, Zimmermann U, Miyazaki T, Presnyakov S, Chang Q, Mukhopadhyay J and Sergeev S 2011 Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton; Geol. Mag. 148 340–347.

    Article  Google Scholar 

  • Wu R S 1985 Multiple scattering and energy transfer of seismic waves: Separation of scattering effect from intrinsic attenuation – I. Theoretical modeling; Geophys. J. Roy. Astron. Soc. 82 57–80.

    Article  Google Scholar 

  • Yoshimoto K, Sato H and Ohtake M 1993 Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda normalization method; Geophys. J. Int. 114 165–174.

    Article  Google Scholar 

  • Zeng Y, Su F and Aki K 1991 Scattered wave energy propagation in a random isotropic scattering medium: 1. Theory; J. Geophys. Res. 96 607–619.

Download references

Acknowledgements

The authors are grateful to the director, NGRI, Hyderabad, for his kind permission to publish this work. This study was supported by the Council of Scientific and Industrial Research (CSIR) twelfth five-year plan project (INDEX) at the CSIR–National Geophysical Research Institute, Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Biswas.

Additional information

Corresponding Editor: Arkoprovo Biswas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, K., Mandal, P. & Khan, P.K. Estimation of coda Q for the eastern Indian craton. J Earth Syst Sci 128, 109 (2019). https://doi.org/10.1007/s12040-019-1140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1140-7

Keywords

Navigation