Skip to main content

Advertisement

Log in

Modeling of source parameters and moment tensors of local earthquakes occurring in the eastern Indian shield

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Earthquake source parameters and crustal Q are being estimated simultaneously through the inversion of S-wave displacement spectra from three-component recordings of ten local cratonic intraplate earthquakes from 3-6 broadband stations in the eastern Indian shield, wherein, an iterative Levenberg-Marquardt inversion technique is used. The estimated seismic moment (Mo) and source radii (r) vary from 7.4 x 1012 to 7.1 x 1014 N-m and 144.2 to 211.3 m, respectively, while estimated stress drops (Δσ) and multiplicative factor (Emo) values range from 0.11 to 4.13 MPa and 1.33 to 2.16, respectively. The corner frequencies range from 6.23 to 8.62 Hz while moment magnitudes vary from 2.44 to 3.57. The radiated seismic energy and apparent stresses range from 8.3 x 106 to 2.0 x 1010 Joules and 0.06 to 0.94 MPa, respectively, wherein the estimated corner frequencies and seismic moment satisfy the relation Mo ∞ f –(3+ε)c for ε = 12.7. Thus, the source scaling of these events clearly deviates from the self-similarity i.e. f–3. Estimated Zuniga parameters reveal that all selected events satisfy the partial stress drop model, which is in good agreement with the global observations. Our estimated crustal S-wave quality factors vary from 1091 to 4926 with an average of 3006, suggesting a less heterogeneous crustal structure underlying the study region.We also perform moment tensor inversion of five selected local events using ISOLA software, which reveals that the dominant deformation mode for the eastern Indian shield is left-lateral strike slip motion with minor normal dip-slip component on an almost vertical plane. This observation suggests that neotectonic vertical movements might have played a key role in generating these earthquakes. Our modeling also depicts that the seismically mildly active Singhbhum shear zone and Eastern Ghats mobile belt are characterized by the left-lateral strike motion while two events in the Chotanagpur half graben belt suggest a normal dip-slip motion along a south dipping plane. A north-south orientation of P-axis is found to be dominant in the area, which is consistent with the prevailing north–south compression over the Indian plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie, R.E. and Rice, J.R. (2005) Small earthquake scaling revisited: can it constrain slip weakening? Geophys. Jour. Internat., v. 162, pp.406–424.

    Google Scholar 

  • Acharya, S. (1984) Stratigraphic and structural evolution of the rocks of the iron ore basins in Singhbhum-Orissa Iron Ore Province, India, CEISM Seminar, Indian Jour. Earth Sci. v. 1, pp.19–28.

    Google Scholar 

  • Acharyya, S.K., Gupta, A. and Orihashi, Y. (2010a) New U-Pb zircon ages from Palaeo-Mesoarchaean TTG gneisses of the Singhbhum Craton, eastern India. Geochemical Jour., v. 44, pp.81–88.

    Article  Google Scholar 

  • Acharyya, S.K., Gupta, A. and Orihashi, Y. (2010b) Neoarchaean-Palaeoproterozoic stratigraphy of the Dhanjori basin, Singhbhum craton, Eastern India: and recording of a few U-Pb zircon dates from its basal part. Jour. Asian Earth Sci., v. 39, pp.527–536.

    Article  Google Scholar 

  • Al-Heety, E. A. M. (2007) Historical seismicity of the stable Continental regions (SCRS) in the Arabian plate (preliminary study), Jour. Al-Anbar Univ. Pure Sci., v. 1(1), pp.1–10.

    Google Scholar 

  • Archuleta, R. J., Cranswick, E., Muellar, C. and Spudich, P. (1982) Source parameters of the 1980 Mammoth Lakes, California, Earthquake sequence, Jour. Geophys. Res., v. 87, pp.4595–4607.

    Article  Google Scholar 

  • Assumpcao, M. (1998) Seismicity and stresses in the Brazilian passive margin, Bull. Seism. Soc. Amer., v. 78(1), pp.160–169.

    Google Scholar 

  • Assumpco, M., Schimmel, M. and Escalante. C. et. al. (2004) Intraplate seismicity in SE Brazil: stress concentration in lithospheric thin spots. Geophys. Jour. Internat., v. 159, pp.390–399.

    Article  Google Scholar 

  • Behera, L., Sain, K. and Reddy, P.R. (2005) Evidence of underplating from seismic and gravity studies in the Mahanadi Delta of eastern India and its tectonic significance. Jour. Geophys. Res., v. 109, pp.1–25.

    Google Scholar 

  • Berteusen, K. A. (1977) Moho depth determinations based on spectral ratio analysis of NORSAR long-period P waves. Phys. Earth Planet. Interior, v. 313, pp.13–326.

    Article  Google Scholar 

  • BruuBouchon, M. (1981) A simple method to calculate Green’s functions for elastic layered media. Bull. Seismol. Soc. Amer., v. 71, pp.959–971.

    Google Scholar 

  • Brune, J. N. (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. Jour. Geophys. Res., v. 75, pp.4997–5009.

    Article  Google Scholar 

  • Byerlee, J. (1978) Friction of rocks, Pure Appld.Geophys, v. 116, pp.615–626.

  • Calais, E., Freed, A.M., Van Arsdale, R. and Stein, S. (2010) Triggereing of New Madrid seismicity by late–Pleistocene erosion, Nature, v. 466, pp.608–611.

  • Campbell, D. L. (1978) Investigation of the stress–concentration mechanism for intraplate earthquakes, Geophys. Res. Lett., v. 5, pp.477–479.

    Article  Google Scholar 

  • Chandra, U. (1977) Earthquakes of Peninsular India- a seismotectonic study, Bull. Seismol. Soc. Amer., v. 67(5), pp.1387–1413.

    Google Scholar 

  • Chetty, T.R.K. and Murthy, D.S.N. (1994) Regional tectonic framework of the Eastern Ghats Mobile Belt: a new interpretation. Proc. Workshop on Eastern Ghat Mobile Belt, Geol. Surv. India, v. 44, pp.39–50.

    Google Scholar 

  • Coutant, O. (1989) Program of numerical simulation AXITRA; Research Report, Laboratoire de Geophysique Interne et Tectonophysique, Grenoble.

    Google Scholar 

  • Dimri, V.P. (1992) Deconvolution and Inverse Theory: Application to Geophysical Problems, Elsevier Science Publishers, Amsterdam 230p.

    Google Scholar 

  • Dunn, J.A. (1929) The geology of north Singhbhum. Mem. Geol. Surv. India, v. 54, pp.166.

    Google Scholar 

  • Fletcher, J. B. (1995) Source parameters and crustal Q for four earthquakes in South Carolina. Seismol. Res. Lett., v. 66, pp.44–58.

    Article  Google Scholar 

  • Gangopadhyay, A. and Talwani, P. (2003) Symptomatic features of intraplate earthquakes, Seismol. Res. Lett., v. 74, pp.863–883.

    Google Scholar 

  • Ghosh, S.K. and Sengupta, S. (1990) The Singhbhum shear zone: structural transition and a kinematic model, Proc. Indian Acad. Sci., v. 1, pp.229–247.

    Google Scholar 

  • Gupta, S., Mohanty, W. K., Mandal, A. and Misra, S. (2014) Ancient terrane boundaries as probable seismic hazards: A case study from the northern boundary of the Eastern Ghats Belt, India. Geoscience Frontiers, v. 5, pp.17–24.

    Article  Google Scholar 

  • Hanks, T. C. (1977) Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions, Pure Appld. Geophys., v. 115, pp.441–458.

    Google Scholar 

  • Havskov, J. and Ottemoller, L. (2003) SEISAN: the earthquake analysis software manual, pp.203.

    Google Scholar 

  • Holdsworth, R.E., Hand, M., Miller, J.A. and Buick, I.S. (2001) Continental reactivation and reworking: an introduction. In: J.A. Miller, R.E., Holdsworth, I.S. Buick and M. Hand (Eds.), Continental Reactivation and Reworking. Geol. Soc. London, Spec. Publ.,v. 184, pp.1–12.

    Google Scholar 

  • Johnston, A.C. and Kanter, L.R. (1990) Earthquakes in stable continental crust. Scientific American, v. 262, pp.54–68.

    Article  Google Scholar 

  • Kanamori, H.K. and Anderson, D.L. (1975) Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Amer., v. 65, pp.1073–1095.

    Google Scholar 

  • Kayal, J. R., Srivastava, V. K., Bhattacharya, S. N., Khan, P. K. and Chatterjee, R. (2009) Source Parameters and Focal Mechanisms of Local Earthquakes: Single Broadband Observatory at ISM Dhanbad. Jour. Geol. Soc. India, v. 74, pp.413–419.

    Article  Google Scholar 

  • Khan, P. K., Biswas, B., Samdarshi, P. and Prasad, R. (2011) Seismicity and the coda-Q variation in eastern Indian shield region, Indian Jour Geosci., v. 65(2), pp.43–50.

  • Kikuchi, M. and Kanamori, H. (1991) Inversion of complex body waves, III, Bull. Seismol. Soc. Amer., v. 81, pp.2335–2350.

    Google Scholar 

  • Krishna, B.N. and Negi, J.G. (1973) Rift valleys beneath Deccan Trap, India. Geophys. Res. Bull. Hyderabad, v. 11, pp.207–237.

    Google Scholar 

  • Kumar, M., Yallanki, S., Biswas, K. and Mandal, P. (2015) Evidence for nonself-similarity in the Mw7.7 2001 Bhuj earthquake sequence, Natural Hazards, v. 75, pp.1577–1598 (DOI 10.1007/s11069-014-1381-3).

  • Lenardic, A., Moresi, L. and Muhlhaus, H. (2000) The role of mobile belts for the longevity of deep cratonic lithosphere: the crumple zone model, Geophys. Res. Lett., v. 27, pp.1235–1238.

    Article  Google Scholar 

  • Mahapatro, S. N., Tripathy, A. K., Nandi, J. K. and Roy, A. (2009) Coexisting Ultramylonite and Pseudotachylyte from the Eastern Segment of the Mahanadi Shear Zone, Eastern Ghats Mobile Belt. Jour. Geol. Soc. India, v. 74, pp.679–689.

    Article  Google Scholar 

  • Malservisi, R., Hugentobler, U., Wonnacott, R. and Hackl, M. (2013) How rigid is a rigid plate? Geodetic constraint from the TrigNet CGPS network, South Africa, Geophys. Jour. Internat., v. 192(3), pp.918–928.

    Google Scholar 

  • Mandal, P., Manglik, A. and Singh, R. N. (1997) Intraplate stress distribution beneath the Killari region, India. Jour. Geophy. Res., v. 102(11), pp.719–729.

    Google Scholar 

  • Mandal, P., Srivastava, J., Joshi, S., Kumar, S., Bhunia, R. and Rastogi, B.K. (2004) Low coda-Qc in the epicentral region of the 2001 Bhuj Earthquake of Mw 7.7, Pure Appld. Geophys., v. 161, pp.1635–1654.

    Google Scholar 

  • Mandal, P. and Biswas, K. (2016) Teleseismic receiver function modeling of the eastern Indian craton, Phys. Earth Planet. Int., DOI: 10.1016/j.pepi.2016.07.002.

  • Mandal, P., Singh, B., Gupta, A., and Nagendra, P. (2017) Modeling of source parameters of the 15 December 2015 Deogarh earthquake of Mw4.0, Jour. Geol. Soc. India, v. 89, pp.363–368. DOI:10.1007/s12594-017-0616-9

    Article  Google Scholar 

  • Mazumder, R., Van Loon, A. J., Mallik, L., Reddy, S. M., Arima, M., Altermann, W., Eriksson, P. G. and De, S. (2012) Mesoarchaean-Palaeoproterozoic stratigraphic record of the Singhbhum crustal province, eastern India: a synthesis; In: Mazumder, R. and Saha, D. (Eds.) Palaeoproterozoic of India. Geol. Soc. London,v. 365, pp.31–49.

    Article  Google Scholar 

  • Mohanty, W. K., Prakash, R., Suresh, G., Shukla, A. K., Yanger Walling, M. and Srivastava, J. P. (2009) Estimation of Coda Wave Attenuation for the National Capital Region, Delhi, India Using Local Earthquakes, Pure Appld. Geophys., v. 166, pp.429–449.

    Google Scholar 

  • Mooney, W. D., Ritsema, J. and Hwang, Y. (2012) Crustal seismicity and maximum earthquake magnitudes (Mmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere. Earth Planet. Sci. Lett., v. 357/358, pp.78–83.

    Article  Google Scholar 

  • Morgan, W. J. (1968) Rises, trenches, great faults, and crustal blocks. Jour. Geophys. Res., v. 73, pp.1959–1982.

    Article  Google Scholar 

  • Morrow, C., Radney, B. and Byerlee, J.D. (1992) Frictional strength and the effective pressure law of montmorillonite and illite clays: fault mechanics and transport properties of rocks. In: Evans, B. and Wong, T.F. (Eds.), Fault Mechanics and Transport Properties of Rocks. Academic Press, San Diego, California, pp.69–88.

    Google Scholar 

  • Mukhopadhyay, J., Beukes, N.J., Armstrong, R.A., Zimmermann, U., Ghosh, G. and Medda, R.A. (2008) Dating the oldest Greenstone in India: a 3.51 Ga precise U-Pb SHRIMP Zircon Age for Dacitic Lava of the Southern Iron Ore Group, Singhbhum Craton, Jour. Geol., v. 116, pp.449–461.

    Article  Google Scholar 

  • Naqvi, S.M. and Rogers, J.J.W. (1987) Precambrian Geology of India. Oxford Univ. Press Inc. 223p.

    Google Scholar 

  • Oldham, T. (1883) A catalogue of Indian earthquakes from the earliest times to the end of 1869 A.D., Mem. Geol. Surv. India., v.XIX, Part 3.

    Google Scholar 

  • Rajendran, C.P., Rajendran, K. and John, B. (1996) The 1993 Killari (Latur) central India earthquake: an example of fault reactivation in Precambrian crust, Geology, v. 24(7), pp.651–654.

  • Rajendran, C. P., Rajendran, K., Thakkar. M. and Goyal, B. (2008) Assessing the previous activity at the source zone of the 2001 Bhujearthquake based on the near-source and distant paleo-seismological indicators. Jour. Geophys. Res., v. 113, pp.1–17.

    Article  Google Scholar 

  • Saha, A.K. (1994) Crustal evolution of Singhbhum–North Orissa, Eastern India. Mem. Geol. Soc. India, no.27, pp.341.

    Google Scholar 

  • Saha, A., Lijesh, S. and Mandal, P. (2012) Simultaneous estimation of earthquake source parameters and crustal Q value from broadband data of selected aftershocks of the 2001 Mw 7.7 Bhuj earthquake, Jour. Earth Syst. Sci., v. 121, pp.1421–1440.

    Article  Google Scholar 

  • Sandiford, M. and Egholm, D. L. (2008) Enhanced intraplate seismicity along continental margins: Some causes and consequences. Tectonophysics, v. 457, pp.197–208.

    Article  Google Scholar 

  • Sarkar, A.N. (1982) Precambrian tectonic evolution of eastern India: A model of converging microplates. Tectonophysics, v. 86, pp.363–397.

    Article  Google Scholar 

  • Sarkar, A.N. and Chakraborty, D.K. (1982) One orogenic belt or two? A structural reinterpretation supported by Landsat data products of the Precambrian metamorphics of Singhbhum, Eastern India, Photogrammetria, v. 37, pp. 185–201.

  • Savage, J.C. and Wood, M.W. (1971) The relation between apparent stress and stress drop. Bull. Seism. Soc. Amer., v. 61, pp.1381–1386.

    Google Scholar 

  • Schulte, S.M. and Mooney, W.D. (2005) An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts, Geophys. Jour. Internat., v. 161, pp.707–721.

    Google Scholar 

  • Home_Main.html)280.

  • Sibson, R. H. (1984) Roughness at the base of the seismogenic zone: contributing factors. Jour. Geophys. Res., v. 89, pp.5791–5799.

    Article  Google Scholar 

  • Singh, S.K. and Ordaz, M. (1994) Seismic energy release in Mexican subduction zone earthquakes, Bull. Seismol. Soc. Amer., v. 84(5), pp.1533–1550.

    Google Scholar 

  • Singh, S.K., Bansal, B.K., Bhattacharya, S.N., Pacheco, J.F., Dattatrayam, R. S., Ordaz, M., Suresh, G., Kamal, and Hough, S.E. (2003) Estimation of Ground Motion for Bhuj (26 January 2001; Mw 7.6) and for Future Earthquakes in India, Bull. Seismol. Soc. Amer., v. 93(1), pp. 353–370.

    Article  Google Scholar 

  • Singh, S.K., Garcia, D., Pacheco, J.F., Valenzuela, R., Bansal, B.K. and Dattatrayam, R.S. (2004) Q of the Indian Shield, Bull. Seismol. Soc. Amer., v. 94(4), pp.1564–1570.

    Article  Google Scholar 

  • Sokos, E. N. and Zahradník, J. (2008) ISOLA a FORTRAN code and a MATLAB GUI to perform multiple-point source inversion of seismic data. Comput. Geosci., v. 34, pp.967–977.

    Article  Google Scholar 

  • Sokos, E. N. and Zahradník, J. (2013) Evaluating Centroid-Moment-Tensor uncertainty in the new version of ISOLA software, Seismol. Res. Lett., v. 84(4), pp. 656–665.

    Google Scholar 

  • Sykes, L. (1978) Intraplate seismicity, reactivation of pre-existing zones of weakness, alkaline magnetism, and other tectonism postdating continental fragmentation. Reviews of Geophysics and Space Physics, v. 16, pp.621–688.

    Article  Google Scholar 

  • Tait, J., Zimmermann, U., Miyazaki, T., Presnyakov, S., Chang, Q., Mukhopadhyay, J. and Sergeev, S. (2011) Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton, Geological Magazine, v. 148, pp.340–347.

  • Talwani, P. (1999) Fault geometry and earthquakes in continental interiors. Tectonophysics, v. 305, pp.371–379.

    Article  Google Scholar 

  • Zahradnik, J., Serpetsidaki, A., Sokos, E. and Tselentis, G.A. (2005) Iterative deconvolution of regional waveforms and a double-event interpretation of the 2003 Lefkada Earthquake, Greece, Bull. Seismol. Soc. Amer., v. 95(1), pp.159–172.

    Article  Google Scholar 

  • Zuniga, F. R. (1993) Frictional overshoot and partial stress drop, which one? Bull. Seismol. Soc. Amer., v. 83, pp.939–944.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prantik Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, K., Mandal, P. Modeling of source parameters and moment tensors of local earthquakes occurring in the eastern Indian shield. J Geol Soc India 89, 619–630 (2017). https://doi.org/10.1007/s12594-017-0671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0671-2

Navigation