Skip to main content
Log in

Cellulolytic, amylolytic and xylanolytic potential of thermophilic isolates of Surajkund hot spring

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

A total of 41 isolates were obtained from various samples (soil, mud, and water) of Surajkund hot spring, Jharkhand, at three different isolation temperatures of 50°C, 60°C, and 70°C. However, our interest was in the thermophilic strains that were isolated at 60°C and 70°C. Four isolates at 70°C (BITSNS038, BITSNS039, BITSNS040, BITSNS041) are the producers of thermozymes, namely amylase, xylanase, and cellulase, respectively. The highlights of the present study also showed that three out of four isolates demonstrated all three enzymatic activities, i.e. amylolytic, xylanolytic and cellulolytic on agar plate assay conditions at 70°C. One of the isolates, BITSNS038, was further chosen for phenotypic characterization as well as 16S rRNA gene sequencing and was affiliated to Geobacillus icigianus. The presence of Geobacillus icigianus was reported first time from hot spring, Surajkund, which showed amylolytic index of 1.58, xylanolytic index of 1.5 and cellulolytic index of 2.3 based on plate assay, and amylase activity of 0.81 U/mL, xylanase activity of 0.72 U/mL and very less cellulase activity of 0.15 U/mL after 24 h of growth in submerged conditions. One isolate at 60°C BITSNS024 was found to exhibit maximum amylase activity with an enzymatic index value of 3.5 and was identified as Anoxybacillus gonensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Acer Ö, Matpan Bekler F, Pirinççioğlu H and Güven K 2016 Purification and characterization of thermostable and detergent-stable α-amylase from Anoxybacillus sp. AH1. Food Technol. Biotechnol. 54 70–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi MK, Wong JW, Kumar S and Awasthi SK 2018 Biodegradation of food waste using microbial cultures producing thermostable α-amylase and cellulase under different pH and temperature. Bioresour. Technol. 248 160–170

    Article  CAS  PubMed  Google Scholar 

  • Bin L, Zhang NN, Zhao C and Lin BX 2012 Characterization of a Recombinant Thermostable Xylanase from Hot Spring Thermophilic Geobacillus sp. TC-W7. J. Microbiol. Biotechnol. 22 1388–1394

    Article  Google Scholar 

  • Bhalla A, Bischoff KM and Sani RK 2015 Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass. Front. Bioeng. Biotechnol. 3 84

  • Bala A and Singh B 2018 Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels. Renew Energy. https://doi.org/10.1016/j.renene.2018.09.100

    Article  Google Scholar 

  • Bohra V, Tikariha H and Dafale NA 2019 Genomically defined Paenibacillus polymyxa ND24 for efficient cellulase production utilizing sugarcane bagasse as a substrate. Appl. Biochem. Biotechnol. 187 266–281

    Article  CAS  PubMed  Google Scholar 

  • Cheng CL and Chang JS 2011 Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour. Technol. 102 8628–8634

    Article  CAS  PubMed  Google Scholar 

  • Cavello I, Urbieta MS, Segretin AB and Giaveno A 2018 Assessment of Keratinase and other hydrolytic enzymes in thermophilic bacteria isolated from geothermal areas in Patagonia Argentina. Geomicrobiol. J. 35 156–165

    Article  CAS  Google Scholar 

  • Derekova A, Sjøholm C, Mandeva R and Kambourova M 2007 Anoxybacillus rupiensis sp. Nov., a novel thermophilic bacterium isolated from Rupi basin (Bulgaria). Extremophiles 11 577–583

    Article  PubMed  Google Scholar 

  • Deep K, Poddar A and Das SK 2013 Anoxybacillus suryakundensis sp. nov, a moderately thermophilic, alkalitolerant bacterium isolated from hot spring at Jharkhand, India. PloS One 8 e85493

  • DeCastro M, Rodríguez-Belmonte E and González-Siso MI 2016 Metagenomics of on discovery of novel thermozymes. Front. Microbiol. 7 1521

    Article  PubMed  PubMed Central  Google Scholar 

  • Florencio C, Couri S and Farinas CS 2012 Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res. 2012

  • Gaur R and Tiwari S 2015 Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 15 19

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Sutradhar S and Baishya D 2019 Delineating thermophilic xylanase from Bacillus licheniformis DM5 towards its potential application in xylooligosaccharides production. World J. Microbiol. Biotechnol. 35 34. https://doi.org/10.1007/s11274-019-2605-1

    Article  CAS  PubMed  Google Scholar 

  • Haki GD and Rakshit SK 2003 Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89 17–34

    Article  CAS  PubMed  Google Scholar 

  • Hou W, Wang S, Dong H and Jiang H 2013 A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16SrRNA gene pyrosequencing. PloS One 8 e53350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini SM and Aziz HA 2013 Evaluation of thermochemical pretreatment and continuous thermophilic condition in rice straw composting process enhancement. Bioresour. Technol. 133 240–247

    Article  CAS  PubMed  Google Scholar 

  • Jardine JL, Stoychev S, Mavumengwana V and Ubomba-Jaswa E 2018 Screening of potential bioremediation enzymes from hot spring bacteria using conventional plate assays and liquid chromatography-Tandem mass spectrometry (Lc-Ms/Ms). J. Environ. Manage 223 787–796

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Trivedi P, Mishra AK and Pandey A 2004 Microbial diversity of soil from two hot springs in Uttaranchal Himalaya. Microbiol. Res. 159 141–146

    Article  CAS  PubMed  Google Scholar 

  • Kasana RC, Salwan R, Dhar H and Dutt S 2008 A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57 503–507

    Article  CAS  PubMed  Google Scholar 

  • Kaláb M, Yang AF and Chabot D 2008 Conventional scanning electron microscopy of bacteria. Infocus magazine10 42–61

    Article  Google Scholar 

  • Kaur A, Mahajan R, Singh A and Garg G 2010 Application of cellulase free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour. Technol. 101 9150–9155

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa N 2013 Discovery of thermostable enzymes from hot environmental samples by metagenomic approaches; in Thermophilic Microbes in Environmental and Industrial Biotechnology: Biotechnology of Thermophiles (eds) Satyanarayana T, Littlechild J and Kawarabayasi Y (Springer, Dordrecht) pp 413–27

  • Kumar M, Yadav AN, Tiwari R and Prasanna R 2014 Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot spring. Ann. Microbiol. 64 741–751

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G and Tamura K 2016 MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kambourova M 2018 Thermostable enzymes and polysaccharides produced by thermophilic bacteria isolated from Bulgarian hot springs. Eng. Life Sci. 18 758–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loperena L, Soria V, Varela H and Lupo S 2012 Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J. Microbiol. Biotechnol. 28 2249–2256

    Article  CAS  PubMed  Google Scholar 

  • Madhavan A, Sindhu R, Binod P, Sukumaran RK and Pandey A 2017 Strategies for design of improved biocatalysts for industrial applications. Bioresour. Technol. 245 1304–1313

    Article  CAS  PubMed  Google Scholar 

  • Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S and Kennes C 2017 Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes. Int. J. Microbiol. 2017

  • Nelson N 1944 A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153 375–380

    CAS  Google Scholar 

  • Narang S and Satyanarayana T 2001 Thermostable α‐amylase production by an extreme thermophile Bacillus thermooleovoransLett. Appl. microbial. 32 31–35

    Article  CAS  Google Scholar 

  • Nagar S, Mittal A and Gupta VK 2012 A cost effective for screening and isolation of xylan degrading bacteria using agro waste material. Asian J. Biol. Sci. 5 384–394

    Article  Google Scholar 

  • Naili B, Sahnoun M, Bejar S and Kammoun R 2016 Optimization of submerged Aspergillus oryzae S2 α-amylase production. Food Sci. Biotechnol. 25 185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poddar A, Lepcha RT and Das SK 2014 Taxonomic study of the genus Tepidiphilus: transfer of Petrobacter succinatimandens to the genus Tepidiphilus as Tepidiphilus succinatimandens comb. nov., emended description of the genus Tepidiphilus and description of Tepidiphilus thermophilus sp. nov., isolated from a terrestrial hot spring. Int. J. Syst. Evol. Microbiol. 64 228–235

    Article  CAS  PubMed  Google Scholar 

  • Panda AK, Bisht SS, Mandal S and Kumar NS 2016 Bacterial and archeal community composition in hot springs from Indo-Burma region, North-east India. Amb. Express 6 111

    Article  PubMed  Google Scholar 

  • Panosyan HH 2017 Thermophilic bacilli isolated from armenian geothermal springs and their potential for production of hydrolytic enzymes. Int. J. Biotech & Bioeng. 3 248–253

    Google Scholar 

  • Paul JS, Lall BM, Jadhav SK and Tiwari KL 2017 Parameter’s optimization and kinetics study of α-amylase enzyme of Bacillus sp. MB6 isolated from vegetable waste. Process Biochem. 52 123–129

    Article  CAS  Google Scholar 

  • Pandey BR, Ghimire S, Bhattarai S and Shrestha BG 2019 Isolation, growth, enzyme assay and identification via 16S rRNA full sequencing of cellulolytic microbes from Nepal for biofuel production. Renew Energy 132 515–526

    Article  CAS  Google Scholar 

  • Saitou N and Nei M 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987 4 406–425

    CAS  PubMed  Google Scholar 

  • Stout LM, Blake RE, Greenwood JP and Martini AM 2009 Microbial diversity of boron-rich volcanic hot springs of St. Lucia, Lesser Antilles. FEMS Microbiol. Ecol. 70 402–412

    Article  CAS  PubMed  Google Scholar 

  • Saxena R, Dhakan DB, Mittal P and Waiker P 2017 Metagenomic analysis of hot springs in Central India reveals hydrocarbon degrading thermophiles and pathways essential for survival in extreme environments. Front. Microbiol. 7 2123

    Article  PubMed  PubMed Central  Google Scholar 

  • Sari B, Faiz O, Genc B and Adiguzel G 2018 New xylanolytic enzyme from Geobacillus galactosidasius BS61 from a geothermal resource in Turkey. Int. J. Biol. Macromol. 119 1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Sudan SK, Kumar N, Kaur I and Sahni G 2018 Production, purification and characterization of raw starch hydrolyzing thermostable acidic α-amylase from hot springs, India. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2018.05.231

  • Tanyildizi MS, Elibol M and Ozer D 2006 Optimization of growth medium for the production of α‐amylase from Bacillus amyloliquefaciens using response surface methodology. J. Chem. Technol. Biotechnol. 81 618–622

    Article  CAS  Google Scholar 

  • Vaikundamoorthy R, Rajendran R, Selvaraju A and Moorthy K 2018 Development of thermostable amylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorg. Chem. 77 494–506

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Bhalla A and Kumar S 2018 Valorization of Lignocellulosic residues for cost-effective production of thermo-alkali-stable xylanase by Geobacillus thermodenitrificans X1 of Indian Himalayan hot spring. Waste Biomass Valorization 1–11

  • Warne RW 2014 The micro and macro of nutrients across biological scales. Integr. Comp. Biol. 54 864–872

    Article  PubMed  Google Scholar 

  • Van Den Burg B 2003 Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6 213–218

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

SS is supported by DBT-JRF fellowship sponsored by the Department of Biotechnology, India. The authors are also sincerely thankful for the technical assistance of Central Instrumentation Facility, Birla Institute of Technology, Mesra, and Microbial Type of Culture Collection, Institute of Microbial Technology, Chandigarh, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubha Rani Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soy, S., Nigam, V.K. & Sharma, S.R. Cellulolytic, amylolytic and xylanolytic potential of thermophilic isolates of Surajkund hot spring. J Biosci 44, 124 (2019). https://doi.org/10.1007/s12038-019-9938-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9938-7

Keywords

Navigation