Skip to main content

Advertisement

Log in

Microbiome and imputed metagenome study of crude and refined petroleum-oil-contaminated soils: Potential for hydrocarbon degradation and plant-growth promotion

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Microbial community structure of crude petroleum oil (CP)- and refined petroleum oil (RP)-contaminated soil was investigated. The taxonomical and functional diversity of such soils can be a great source of information about microbial community and genes involved in petroleum hydrocarbon (PHC) degradation. In this study, microbial diversity of soils contaminated by RP from urban biome of Pune, India, and CP from agricultural biome of Gujarat, India, were assessed by 16S rRNA amplicon sequencing on Illumina MiSeq platform. Association between the soil microbial community and the physicochemical parameters were investigated for their potential role. In RP- and CP-contaminated soils, the microbiome analysis showed Proteobacteria as most dominant phylum followed by Actinobacteria. Interestingly, Firmicutes were most prevailing in a CP-contaminated sample while they were least prevailing in RP-contaminated soils. Soil moisture content, total organic carbon and organic nitrogen content influenced the taxa diversity in these soils. Species richness was more in RP as compared to CP soils. Further prediction of metagenome using PICRUSt revealed that the RP and CP soils contain microbial communities with excellent metabolic potential for PHC degradation. Microbial community contributing to genes essential for soil health improvement and plant growth promotion was also gauged. Our analysis showed promising results for future bioaugmentation assisted phytoremediation (BAP) strategies for treating such soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abbasian F, Palanisami T, Megharaj M, Naidu R, Lockington R and Ramadass K 2016 Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnol. Prog. 32 638–648

    Article  CAS  PubMed  Google Scholar 

  • Abdulsalam S, Adefila SS, Bugaje IM and Ibrahim S 2012 Bioremediation and biodegradation bioremediation of soil contaminated with used motor oil in a closed system. J. Bioremediat. Biodegrad. 3 172–179

    Google Scholar 

  • Achuba FI and Okoh PN 2014 Effect of petroleum products on soil catalase and dehydrogenase activities. Open J. Soil Sci. 4 399–406

    Article  Google Scholar 

  • Agnello AC, Bagard M, van Hullebusch ED, Esposito G and Huguenot D 2016 Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2015.10.061

    Book  Google Scholar 

  • Al-Awadhi H, El-Nemr I, Mahmoud H, Sorkhoh NA and Radwan SS 2009 Plant-associated bacteria as tools for the phytoremediation of oily nitrogen-poor soils. Int. J. Phytoremediation 11 11–27

    Article  Google Scholar 

  • Andrews S 2010 FastQC: A quality control tool for high throughput sequence data. In: Bioinformatics

  • Anwar S, Ali B and Sajid I 2016 Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front. Microbiol. 7 1–11

    Article  Google Scholar 

  • Asghar HN, Rafique HM, Khan MY and Zahir ZA 2017 Phytoremediation of light crude oil by maize (Zea mays L.) bio-augmented with plant growth promoting bacteria. Soil Sediment. Contam. 26 749–763

    Article  CAS  Google Scholar 

  • Aßhauer KP, Wemheuer B, Daniel R and Meinicke P 2015 Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31 2882–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC and Frankenberger WT 2005 Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Biores. Technol. 96 1049–1055

    Article  CAS  Google Scholar 

  • Bruto M, Prigent-Combaret C, Muller D and Moënne-Loccoz Y 2014 Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci. Rep. 4 1–10

    Google Scholar 

  • Chettri B, Mukherjee A, Prasad A, Mukherjee AK, Langpoklakpam JS, Singh AK, Basak P, Bhattacharyya M and Chattopadhyay D 2017 Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Sci. Rep. 7 1–22

    Article  CAS  Google Scholar 

  • Chikere CB, Mordi IJ, Chikere BO, Selvarajan R, Ashafa TO and Obieze CC 2019 Comparative metagenomics and functional profiling of crude oil-polluted soils in Bodo West Community, Ogoni, with other sites of varying pollution history. Ann. Microbiol. https://doi.org/10.1007/s13213-019-1438-3

    Article  Google Scholar 

  • Chong J, Xia J, Habib S, Dhariwal A, King IL and Agellon LB 2017 MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45 W180–W188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comeau AM, Douglas GM and Langille MGI 2017 Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems 2 1–11

    Article  Google Scholar 

  • Coopman R, Nick G, Filali-Maltouf A, Gillis M, de Lajudie P, Mohamed SH, Willems A, Kersters K, Lindström K, Torck U and Dreyfus B 2011 Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Syst. Appl. Microbiol. 22 119–132

    Google Scholar 

  • Das N and Chandran P 2010 Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int. 2011 1–13

    Google Scholar 

  • De Mandal S, Chatterjee R and Kumar NS 2017 Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiol. 17 1–9

    Article  CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P and Andersen GL 2006 Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72 5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos HF, Peixoto RS, Tiedje J, do Carmo FL, dos Santos AL, Rosado AS, Cury JC and van Elsas JD 2011 Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS One 6 e16943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis EC, Goldewijk KK, Siebert S, Lightman D and Ramankutty N 2010 Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol. Biogeogr. 19 589–606

    Google Scholar 

  • Ellis EC and Ramankutty N 2008 Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6 439–447

    Article  Google Scholar 

  • Flores-Mireles AL, Winans SC and Holguin G 2007 Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots. Appl. Environ. Microbiol. 73 7308–7321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Liang J, Teng T and Zhang M 2018 Petroleum contamination evaluation and bacterial community distribution in a historic oilfield located in loess plateau in China. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2018.12.012

    Book  Google Scholar 

  • García-Sánchez M, Košnář Z, Mercl F, Aranda E and Tlustoš P 2018 A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicol. Environ. Saf. 147 165–174

    Article  CAS  PubMed  Google Scholar 

  • Glick BR 2010 Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28 367–374

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Sree Vidya M and Rathore A 2013 Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. Springerplus 2 574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosai HB, Sachaniya BK, Panseriya HZ and Dave BP 2018 Functional and phylogenetic diversity assessment of microbial communities at Gulf of Kachchh, India: An ecological footprint. Ecol. Indic. 93 65–75

    Article  Google Scholar 

  • Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas GV, Seshagiri S, Schuster SC, Rajesh P and Gupta R 2014 Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One https://doi.org/10.1371/journal.pone.0104259

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamme JD Van, Singh A and Ward OP 2003 Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67 503–549

    Article  CAS  Google Scholar 

  • Head IM, Jones DM and Röling WFM 2006 Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 4 173–182

    Article  CAS  PubMed  Google Scholar 

  • Head IM and Swannell RPJ 1999 Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr. Opin. Biotechnol. 10 234–239

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Piceno YM, Baker BJ, Tom L, Thomas BC, Andersen GL, Banfield JF and Singh A 2016 Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs. MBio 7 1–12

    Article  CAS  Google Scholar 

  • Ivshina IB, Kuyukina MS, Krivoruchko AV, Elkin AA, Makarov SO, Cunningham CJ, Peshkur TA, Atlas RM and Philp JC 2015 Oil spill problems and sustainable response strategies through new technologies. Environ. Sci. Process Impacts 17 1201–1219

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Gupta VK, Pathak H, Lowry M and Jaroli PD 2010 Characterization of 2T engine oil degrading indigenous bacteria, isolated from high altitude (Mussoorie), India. World J. Microbiol. Biotechnol. https://doi.org/10.1007/s11274-010-0316-8

    Article  PubMed  Google Scholar 

  • Jani K, Dhotre D, Bandal J, Shouche Y, Suryavanshi M, Rale V and Sharma A 2018 World’s largest mass bathing event influences the bacterial communities of Godavari, a holy river of India. Microb. Ecol. 76 706–718

    Article  PubMed  Google Scholar 

  • Jansson JK and Hofmockel KS 2018 The soil microbiome — from metagenomics to metaphenomics. Curr. Opin. Microbiol. 43 162–168

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zong S, Hu L, Shi S, Zhai X, Wang B, Li G and Zhang D 2017 The dynamic change of microbial communities in crude oil-contaminated soils from oilfields in China. Soil Sediment. Contam. https://doi.org/10.1016/j.exppara.2009.03.010

    Article  Google Scholar 

  • Jung J, Philippot L and Park W 2016 Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms. Nat. Publ. Gr. 6 1–10

    Google Scholar 

  • Kadri T, Magdouli S, Rouissi T and Brar SK 2018 Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes. Biochem. Eng. J. 132 279–287

    Article  CAS  Google Scholar 

  • Khan MAI, Biswas B, Smith E, Naidu R and Megharaj M 2018 Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil- a review. Chemosphere 212 755–767

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Afzal M, Iqbal S and Khan QM 2013 Chemosphere plant – bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90 1317–1332

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Le NT, Chung BS, Park JH, Bae J, Madsen EL, Jeon CO and Al KIMET 2008 Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p -xylenes by the newly isolated bacterium pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 74 7313–7320. https://doi.org/10.1128/aem.01695-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koponen HT, Jaakkola T, Keinänen-Toivola MM, Kaipainen S, Tuomainen J, Servomaa K and Martikainen PJ 2006 Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biol. Biochem. 38 1861–1871

    Article  CAS  Google Scholar 

  • Kopylova E, Navas-Molina JA, Mercier C, Xu ZZ, Mahé F, He Y, Zhou H-W, Rognes T, Caporaso JG and Knight R 2016 Open-source sequence clustering methods improve the state of the art. mSystems 1 e00003–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC and Huettel M 2011 Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl. Environ. Microbiol. 77 7962–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG and Knight R 2012 Using QIIME to analyze 16s rRNA gene sequences from microbial communities. Curr. Protoc. Microbiol. 1 1–20

    Google Scholar 

  • Kumar V, AlMomin S, Al-Aqeel H, Al-Salameen F, Nair S and Shajan A 2018 Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa. PLoS One 13 1–16

    Google Scholar 

  • Kumbhare S V, Dhotre DP, Dhar SK, Jani K, Apte DA, Shouche YS and Sharma A 2015 Insights into diversity and imputed metabolic potential of bacterial communities in the continental shelf of Agatti Island. PLoS One 10 1–14

    Article  CAS  Google Scholar 

  • Langenhoff AAM, Morillo JA, Abu Al-Soud W, Maphosa F, Rijnaarts HHM, Smidt H, Sutton NB and Grotenhuis T 2012 Impact of long-term diesel contamination on soil microbial community structure. Appl. Environ. Microbiol. 79 619–630

    PubMed  Google Scholar 

  • Langille MGI, Clemente JC, Knight R, Burkepile DE, Caporaso JG, McDonald D, Zaneveld J, Vega Thurber RL, Reyes JA, Beiko RG, Knights D and Huttenhower C 2013 Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31 814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Nostrand JD Van, Deng Y, He Z, Wu L, Zhang X, Li G, Zhou J, Van Nostrand JD, Deng Y, He Z, Wu L, Zhang X, Li G and Zhou J 2010 Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J. 5 403–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin X, Li X, Li P, Li F, Zhang L and Zhou Q 2008 Evaluation of plant-microorganism synergy for the remediation of diesel fuel contaminated soil. Bull. Environ. Contam. Toxicol. 81 19–24

    Article  CAS  PubMed  Google Scholar 

  • Looper JK, Cotto A, Kim BY, Lee MK, Liles MR, Ní Chadhain SM and Son A 2013 Microbial community analysis of deepwater horizon oil-spill impacted sites along the Gulf coast using functional and phylogenetic markers. Environ. Sci. Process Impacts 15 2068–2079

    Article  CAS  PubMed  Google Scholar 

  • Lozupone C, Lladser ME, Knights D, Stombaugh J and Knight R 2011 UniFrac: An effective distance metric for microbial community comparison. ISME J. 5 169–172

    Article  PubMed  Google Scholar 

  • Luo C, Xie S, Sun W, Li X and Cupples AM 2009 Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl. Environ. Microbiol. 75 4644–4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M 2011 Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17 10

    Article  Google Scholar 

  • McMurdie PJ and Holmes S 2013 Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One https://doi.org/10.1371/journal.pone.0061217

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller SJ, Hao X, Wei G, Rensing C, Xie P and Johnstone L 2012 Genome sequence and mutational analysis of plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing. Appl. Environ. Microbiol. 78 5384–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee AK and Bordoloi NK 2011 Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study. Environ. Sci. Pollut. Res. Int. 18 471–478

    Article  CAS  PubMed  Google Scholar 

  • Muratova A, Hübner T, Narula N, Wand H, Turkovskaya O, Kuschk P, Jahn R and Merbach W 2003 Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil. Microbiol. Res. 158 151–161

    Article  CAS  PubMed  Google Scholar 

  • Odjegba V and Atebe J 2007 The effect of used engine oil on carbohydrate, mineral content and nitrate reductase activity of leafy vegetable (Amaranthus hybridus L.). J. Appl. Sci. Environ. Manag. https://doi.org/10.4314/jasem.v11i2.55039

    Article  Google Scholar 

  • Odjegba VJ and Sadiq AO 2002 Effects of spent engine oil on the growth parameters, chlorophyll and protein levels of Amaranthus hybridus L. Environmentalist 22 23–28

    Article  Google Scholar 

  • Ojewumi ME, Anenih EV, Taiwo OS, Adekeye BT, Awolu OO and Ojewumi EO 2018 A bioremediation study of raw and treated crude petroleum oil polluted soil with Aspergillus niger and Pseudomonas aeruginosa. J. Ecol. Eng. 19 226–235

    Article  Google Scholar 

  • Onuoha SC, Chukwura EI and Fatokun K 2014 Stimulated biodegradation of spent lubricating motor oil in soil amended with animal droppings. Am. J. Biosci. 2 19–27

    Article  CAS  Google Scholar 

  • Ortiz-Estrada ÁM, Gollas-Galván T, Martínez-Córdova LR and Martínez-Porchas M 2018 Predictive functional profiles using metagenomic 16S rRNA data: A novel approach to understanding the microbial ecology of aquaculture systems. Rev. Aquac. https://doi.org/10.1111/raq.12237

    Article  Google Scholar 

  • Paul D, Mhatre SS, Shouche YS, Marathe NP, Shetty SA, Bhute S, Kumbhare SV and Chowdhury SP 2016 Exploration of microbial diversity and community structure of Lonar lake: the only hypersaline meteorite crater lake within basalt rock. Front. Microbiol. 6 1–12

    Article  Google Scholar 

  • Peng M, Zi X and Wang Q 2015 Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16s rRNA genes. Int. J. Environ. Res. Public Health 12 12002–12015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-campos J, Perales-garcia A, Hernandez-carballo J, Martinez-rabelo F and Contreras-ramos SM 2019 Bioremediation of soil contaminated by hydrocarbons with the combination of three technologies: bioaugmentation, phytoremediation, and vermiremediation. J. Soil Sediments 19 1981–1994

    Article  CAS  Google Scholar 

  • Röling WFM and Van Bodegom PM 2014 Toward quantitative understanding on microbial community structure and functioning: A modeling-centered approach using degradation of marine oil spills as example. Front. Microbiol. 5 1–12

    Google Scholar 

  • Russel J, Røder HL, Madsen JS, Burmølle M and Sørensen SJ 2017 Antagonism correlates with metabolic similarity in diverse bacteria. Proc. Natl. Acad. Sci. 114 10684–10688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salam LB, Obayori SO, Nwaokorie FO, Suleiman A and Mustapha R 2017 Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil. Environ. Sci. Pollut. Res. 24 7139–7159

    Article  CAS  Google Scholar 

  • Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N, et al. 2012 Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS One 7 1–12

    Article  CAS  Google Scholar 

  • Shah V, Zakrzewski M, Wibberg D, Eikmeyer F, Schlüter A and Madamwar D 2013 Taxonomic profiling and metagenome analysis of a microbial community from a habitat contaminated with industrial discharges. Microb. Ecol. 66 533–550

    Article  PubMed  Google Scholar 

  • Sharma G, Kumar PG, Gupta RK, Block M and Alipore N 2016 Hydrocarbons and their impact on certain soil properties: A review. Bio. Bull. 2 43–51

    Google Scholar 

  • Suja F, Rahim F, Taha MR, Hambali N, Rizal Razali M, Khalid A and Hamzah A 2014 Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Int. Biodeterior. Biodegrad. 90 115–122

    Article  CAS  Google Scholar 

  • Sun W, Dong Y, Gao P, Fu M, Ta K and Li J 2015a Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: Implications for active petroleum-degrading capacity. J. Microbiol. 53 371–378

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Li J, Jiang L, Sun Z, Fu M and Peng X 2015b Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation. Appl. Microbiol. Biotechnol. 99 8751–8764

    Article  CAS  PubMed  Google Scholar 

  • Sutton NB, Maphosa F, Morillo JA, Al-soud WA, Langenhoff AAM, Grotenhuis T, Rijnaarts HHM and Smidt H 2013 Impact of long-term diesel contamination on soil microbial. Appl. Environ. Microbiol. 79 619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Wang M, Wang F, Sun Q and Zhou Q 2011 Eco-toxicity of petroleum hydrocarbon contaminated soil. J. Environ. Sci. 23 845–851

    Article  CAS  Google Scholar 

  • Tsurumaru H, Okubo T, Okazaki K, HasHimoto M, Kakizaki K, et al. 2015 Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ. 30 63–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma VC 2011 Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J. Basic Microbiol. 51 550–556

    Article  CAS  PubMed  Google Scholar 

  • Wang LL, Wang ET, Liu J, Li Y and Chen WX 2006 Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microb. Ecol. 52 436–443

    Article  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM and Cole JR 2007 Naıve Bayesian classifier for rapid assignment of rRNA sequences. Appl. Environ. Microbiol. 73 5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liang J, Wang J and Gao S 2018 Combining stable carbon isotope analysis and petroleum-fingerprinting to evaluate petroleum contamination in the Yanchang oilfield located on loess plateau in China. Environ. Sci. Pollut. Res. 25 2830–2841

    Article  CAS  Google Scholar 

  • Ward T 2019 BugBase predicts organism-level microbiome phenotypes. Prog. Neurobiol. 2:3. doi: http://dx.doi.org/10.1101/133462

    Article  CAS  Google Scholar 

  • Wu T, Xu J, Xie W, Yao Z, Yang H and Sun C 2018 Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front. Microbiol. 9 1–12. https://doi.org/10.3389/fmicb.2018.01087

    Article  Google Scholar 

  • Xie S, Sun W, Luo C and Cupples AM 2011 Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation 22 71–81

    Article  CAS  PubMed  Google Scholar 

  • Yamane KY, Aki HM, Akayama TN, Akajima TN, Omura NN, Chiyama HU and Itaoka MK 2008 Diversity and similarity of microbial communities in petroleum crude oils produced in Asia. Biosci. Biotechnol. Biochem. 72 2831–2839

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Sinkko H, Penttinen P and Lindström K 2016 Characterization of successional changes in bacterial community composition during bioremediation of used motor oil-contaminated soil in a boreal climate. Sci. Total Environ. 542 817–825

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Jia R, Chen B and Li L 2014 Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Env. Sci. Pollut. Res. https://doi.org/10.1007/s11356-014-3027-0

  • Yergeau E, Sanschagrin S, Beaumier D and Greer CW 2012 Metagenomic analysis of the bioremediation of diesel-contaminated canadian high arctic soils. PloS one 7 1–10

    Article  CAS  Google Scholar 

  • Zhang J, Kobert K, Flouri T and Stamatakis A 2014 PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30 614–620

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Yogesh Shouche, Dr Shrikant Pawar and Mr Mandar Rasane for discussions, help and suggestions for the molecular analysis done at NCMR, NCCS, Pune.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asim M Auti or Dhiraj P Dhotre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auti, A.M., Narwade, N.P., Deshpande, N.M. et al. Microbiome and imputed metagenome study of crude and refined petroleum-oil-contaminated soils: Potential for hydrocarbon degradation and plant-growth promotion. J Biosci 44, 114 (2019). https://doi.org/10.1007/s12038-019-9936-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9936-9

Keywords

Navigation