Skip to main content
Log in

Comparative metagenomics and functional profiling of crude oil-polluted soils in Bodo West Community, Ogoni, with other sites of varying pollution history

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The impact of long-term crude oil pollution on soil microbial community structure in Bodo West Community, Ogoniland, Nigeria, was investigated to determine the amenability of the soil to microbial mediated remediation. Crude oil-polluted and pristine soil samples were collected approximately from 0 to 30 cm depth for both chemical and microbiological analyses. Total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) were determined using gas chromatograph–mass spectrophotometer (GC-MS). The soil microbiome was determined using the Illumina MiSeq platform. Results from this study were then compared with publicly available data from other oil-polluted sites. Taxonomic biomarkers and pathways associated with oil-polluted soils were detected using bioinformatics pipelines. TPH in the polluted and pristine soils were 7591 mg/kg and 199.70 mg/kg respectively, while the values of PAHs were significantly higher (p < 0.05) in the oil-polluted soil. Predictive functional and biomarker analysis demonstrated that microbes detected in the oil-polluted environment were involved in different metabolic pathways for degradation of a broad set of xenobiotic aromatic compounds. Established hydrocarbon degraders belonging to the families Alcanivoracaceae and Oceanospirillaceae were mostly detected in the oil-polluted soils. Sneathiella, Parvibaculum, Sphingobium, and Oceanicaulis were among biomarker taxa. The bacterial families Acidithiobacillaceae and Desulfobacteraceae were differentially more abundant in Bodo West spill site than any other site used for comparison. Furthermore, differentially represented species in our study site and other oil-polluted sites ranged from 21 to 42 bacterial families. The findings from this study revealed the bacterial community had a strong dependence on hydrocarbons and that acid-tolerant bacterial families can as well contribute significantly to biodegradation in the site and other polluted sites in Ogoniland usually known to have an acidic pH. Further research on Bodo West spill site will reveal the novel enzymes and pathways for enhanced microbial mediated eco-restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abia ALK, Alisoltani A, Keshri J, Ubomba-Jaswa E, (2018) Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Sci Total Environ 616–617:326–334. https://doi.org/10.1016/j.scitotenv.2017.10.322

  • Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, … Huttenhower C (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome, 8(6). https://doi.org/10.1371/journal.pcbi.1002358

  • Allen JP, Atekwana EA, Duris JW, Werkema DD, Rossbach S (2007) The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Appl Environ Microbiol 73(9):2860–2870

  • APHA (2012) Standard methods for the examination of water and wastewater. Standard Methods, 541. ISBN 9780875532356

  • Ataikiru TL, Okorhi-damisa BF, Akpaiboh JI (2017) Microbial community structure of an oil polluted site in. International Research Journal of Public and Environmental Health, 4(3), 41–47

  • Bao YJ, Xu Z, Li Y, Yao Z, Sun J, Song H (2017) High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism. J Environ Sci (China) 56:25–35. https://doi.org/10.1016/j.jes.2016.08.022

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. WileyRoyal Statistical Society. https://doi.org/10.2307/2346101

  • Berthe-Corti L, Nachtkamp M (2010) Bacterial communities in hydrocarbon-contaminated marine coastal environments. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ et al (2011a) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108(Supplement_1):4516–4522. https://doi.org/10.1073/pnas.1000080107

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, … Walters WA (2011b). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303

  • Chen C, Khaleel SS, Huang H, Wu CH (2014) Software for pre-processing Illumina next-generation sequencing short read sequences. Source Code Biol Med 9(8):1–11. https://doi.org/10.1038/nbt1486

  • Chikere CB, Azubuike CC, Fubara EM (2017). Shift in microbial group during remediation by enhanced natural attenuation (RENA) of a crude oil-impacted soil: A case study of Ikarama Community, Bayelsa, Nigeria. 3Biotech 7:152. https://doi.org/10.1007/s13205-017-0782-x

  • Chikere CB, Obieze CC (2018) Effect of hydrocarbon pollution on microbial diversity and implication for bioremediation. In Proceedings of the 2018 International Women in Science Without Borders (WISWB) – Indaba. (pp. 10–11). Johannesburg. Retrieved from https://researchspace.csir.co.za/dspace/handle/10204/10251

  • dos Santos M, Sabirova V, Timmis J, Yakimov MM (2010) Alcanivorax borkumensis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, pp 1266–1285

    Google Scholar 

  • dos Santos HF, Cury JC, do Carmo FL, dos Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS, Heimesaat M (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS ONE 6(3):e16943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DPR (2002) Environmental Guidelines and Standards for the Petroleum Industry in Nigeria (Egaspin). Lagos. Retrieved from http://www.ngfcp.gov.ng/media/1066/dprs-egaspin-2002-revised-edition.pdf

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrenfeld N, Cozzarelli IM, Bailey Z, Pruden A (2014) Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume. Microb Ecol 68(3):453–462

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Xie T, Wang X, Bai J, Tang L, Zhao H et al (2018) Metagenomics analysis of microbial community and function involved in Cd-contaminated soil. BMC Microbiol 18(11):1–13. https://doi.org/10.1186/s12866-018-1152-5

    Article  CAS  Google Scholar 

  • Gałązka A, Grządziel J, Gałązka R, Ukalska-Jaruga A, Strzelecka J, Smreczak B (2018) Genetic and functional diversity of bacterial microbiome in soils with long term impacts of petroleum hydrocarbons. Front Microbiol 9:1923. https://doi.org/10.3389/fmicb.2018.01923

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson J, Harwood CS, Harwood SC (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol. 56(1):345–369. https://doi.org/10.1146/annurev.micro.56.012302.160749

  • Greer CW (2010) Bacterial diversity in hydrocarbon-polluted rivers, estuaries and sediments. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Hamamura N, Olson SH, Ward DM, Inskeep WP (2005) Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Appl Environ Microbiol 71(10):5943–5950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: Palentological Statistics Software Package for Education and Data Analysis, 4(1), 1–9

  • Hassanshahian M, Zeynalipour MS, Musa FH, Hassanshahian M, Zeynalipour MS, Musa FH (2014) Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance). Mar Pollut Bull 82(1–2):39–44. https://doi.org/10.1016/j.marpolbul.2014.03.027

    Article  CAS  PubMed  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182

    Article  CAS  PubMed  Google Scholar 

  • Huettel M, Overholt WA, Kostka JE, Hagan C, Kaba J, Brian W, Dudley S (2018) Degradation of Deepwater Horizon oil buried in a Florida beach influenced by tidal pumping Gulf of Mexico, 126(December 2017), 488–500

  • Joshi MN, Dhebar SV, Bhargava P, Pandit AS, Patel RP, Saxena AK, Bagatharia SB (2014) Metagenomic approach for understanding microbial population from petroleum muck. Genome Announc. 2(3):e00533–e00514. https://doi.org/10.1128/genomeA.00533-14.Copyright

  • Joye S, Kleindienst S, Gilbert JA, Handley KM, Weisenhorn P, Overholt WA, Kostka JE (2016) Responses of microbial communities to hydrocarbon exposures. Oceanography 29(3):1–15

    Article  Google Scholar 

  • Kadali KK, Simons KL, Skuza PP, Moore RB, Ball AS (2012) A complementary approach to identifying and assessing the remediation potential of hydrocarbonoclastic bacteria. J Microbiol Methods 88(3):348–355

    Article  CAS  PubMed  Google Scholar 

  • Kappell AD, Wei Y, Newton RJ, Van Nostrand JD, Zhou J, McLellan SL, Yakimov MM (2014) The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the deepwater horizon oil spill. Front Microbiol 5:1–13

  • Keshri J, Mankazana BJ, Momba MN (2015) Profile of bacterial communities in South African mine-water samples using Illumina next-generation sequencing platform. Appl Microbiol Biotechnol 99(7):3233–3242

    Article  CAS  PubMed  Google Scholar 

  • Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding B, Morris PJ (2013) Metagenomic analysis and metabolite profiling of deep–sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 4:1–17

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Kumar R, Manickam N (2018) Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour Technol 254(November 2017):1–26. https://doi.org/10.1016/j.biortech.2018.01.075

    Article  CAS  Google Scholar 

  • Kümmel S, Herbst F, Bahr A, Duarte M, Pieper DH, Jehmlich N, Seifert J, von Bergen M, Bombach P, Richnow HH, Vogt C (2015) Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiol Ecol 91(3)

  • Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N, Mason OU, Hultman J, Prestat E, Hazen TC, Jansson JK (2014) Assessment of the deepwater horizon oil spill impact on Gulf coast microbial communities. Front Microbiol 5

  • Langille MGI, Zaneveld J, Caporaso JG, Mcdonald D, Knights D, Reyes JA et al (2013) Analysis predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindén O, Pålsson J (2013) Oil contamination in ogoniland, Niger delta. Ambio 42(6):685–701. https://doi.org/10.1007/s13280-013-0412-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Looper JK, Cotto A, Kim B, Lee M, Liles MR, Chadhain SM, Son A (2013) Microbial community analysis of Deepwater Horizon oil-spill impacted sites along the Gulf coast using functional and phylogenetic markers. Environ Sci Process Impacts 15(11):2068

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu J (2013) Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the oil spill. MicrobiologyOpen 2(3):492–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Xing D, Ren N (2012) Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H 2 production from waste activated sludge. Water Res 46(7):2425–2434. https://doi.org/10.1016/j.watres.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  • McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P (2010) Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 74(3):669–681

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Chettri B, Langpoklakpam JS, Basak P, Prasad A, Mukherjee AK, Bhattacharyya M, Singh AK, Chattopadhyay D (2017) Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Sci Rep 7(1):1108. https://doi.org/10.1038/s41598-017-01126-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7683183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R, Gilbert J (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 6(2):e17000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton RJ, Huse SM, Morrison HG, Peake CS, Sogin ML, McLellan SL (2013) Shifts in the microbial community composition of gulf coast beaches following beach oiling. PLoS ONE 8:1–13

  • Nwinyi OC, Ajayi OO, Amund OO (2016) Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas. Braz J Microbiol 47(3):551–562. https://doi.org/10.1016/j.bjm.2016.04.026

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG, Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parthipan P, Preetham E, Machuca LL, Rahman PKSM, Murugan K, Rajasekar A (2017) Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol 8(FEB):1–14. https://doi.org/10.3389/fmicb.2017.00193

    Article  Google Scholar 

  • Paul S, Cortez Y, Vera N, Villena GK, Gutiérrez-Correa M (2016) Metagenomic analysis of microbial community of an Amazonian geothermal spring in Peru. Genom Data 9:63–66. https://doi.org/10.1016/j.gdata.2016.06.013

  • Selvarajan R, Maredza TA, Tekere M (2014). Microbial exploration in extreme conditions: metagenomic analysis and future perspectives. In: BENEDETTI C (ed) Metagenomics—methods, applications and perspectives. Nova Science Publishers, Inc., New York, pp 157–181

  • Selvarajan R, Sibanda T, Tekere M (2018a). Thermophilic bacterial communities inhabiting the microbial mats of “indifferent” and chalybeate (iron-rich) thermal springs: Diversity and biotechnological analysis. MicrobiologyOpen 7, 1–12.

  • Selvarajan R, Sibanda T, Venkatachalam S, Kamika I, Nel W (2018b) Industrial wastewaters harbor a unique diversity of bacterial communities revealed by high-throughput amplicon analysis. Ann Microbiol, 1–14. https://doi.org/10.1007/s13213-018-1349-8

  • Sutton NB, Maphosa F, Morillo JA, Al-Soud WA, Langenhoff AM, Grotenhuis T, Rijnaarts HM, Smidt H (2012) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79(2):619–630

    Article  CAS  PubMed  Google Scholar 

  • Reid T, Chaganti S, Droppo IG, Weisener CG (2018) Novel insights into freshwater hydrocarbon-rich sediments using metatranscriptomics: opening the black box. Water Res, 1–27. https://doi.org/10.1016/j.watres.2018.02.039

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeyer J (2013) The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10(6):3983–3996. https://doi.org/10.5194/bg-10-3983-2013

    Article  Google Scholar 

  • Sibanda T, Selvarajan R, Tekere M (2017) Synthetic extreme environments: overlooked sources of potential biotechnologically relevant microorganisms. Microb Biotechnol. https://doi.org/10.1002/mrd.22357

  • Stefani FOP, Bell TH, Marchand C, De La Providencia IE, El Yassimi A, St-Arnaud M, Hijri M (2015) Culture-dependent and -independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoS One 10(6):1–16. https://doi.org/10.1371/journal.pone.0128272

    Article  CAS  Google Scholar 

  • The Guardian. (2018) Fishing in oily waters: Bodo’s long, painful wait for pollution clean-up. Retrieved June 26, 2018, From https://guardian.ng/features/fishing-in-oily-waters-bodos-long-painful-wait-for-pollution-clean-up/

  • USEPA (1978) Test method for evaluating total recoverable petroleum hydrocarbon, method 418.1 (spectrophotometric, infrared). Government Printing Office, Washington, D.C.

    Google Scholar 

  • Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9(1):597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang W, Lai Q, Shao Z (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Li C, Wang H, Chen W, Huang Q, Wang F, Li C, Wang H, Chen W, Huang Q (2016) Characterization of a phenanthrene-degrading microbial consortium enriched from petrochemical contaminated environment. Int Biodeterior Biodegrad 98:4209–4221. https://doi.org/10.1016/j.ibiod.2016.08.028

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1987160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18(3):257–266

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Doak TG (2009) A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput Biol 5(8):e1000465. https://doi.org/10.1371/journal.pcbi.1000465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Centre for High Performance Computing (CHPC) facility, South Africa, for providing computational support for sequence data analysis.

Data accessibility statement

Sequence reads for Bodo West, Ogoniland, samples were deposited in GenBank (Sequence Reads Archive) under the SRA accession number SRP133543.

Funding

This study was self-funded by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chioma Blaise Chikere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

N/A

Informed consent

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 7
figure 7

Abundance and distribution of the five most abundant phyla across the samples. *USA (Pensacola beach oil-polluted and pristine soils). India (oil-polluted soils from Noonmati and Barhola oil refineries India). Bodo West (oil-polluted soils, Bodo West, Ogoniland, Nigeria)

Fig. 8
figure 8

Comparison of microbial community structure and its abundance in the crude oil-polluted and the pristine soil samples obtained from Bodo West, Ogoniland, Nigeria. *IES (polluted soil). *ICES (pristine soil)

Table 4 Summary information on datasets used for this study
Table 5 PERMANOVA analysis for bacterial diversity using Bray–Curtis
Table 6 PERMANOVA analysis for gene abundance using Bray–Curtis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikere, C.B., Mordi, I.J., Chikere, B.O. et al. Comparative metagenomics and functional profiling of crude oil-polluted soils in Bodo West Community, Ogoni, with other sites of varying pollution history. Ann Microbiol 69, 495–513 (2019). https://doi.org/10.1007/s13213-019-1438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-019-1438-3

Keywords

Navigation