Skip to main content
Log in

Effect of temperature on DNA double helix: An insight from molecular dynamics simulation

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The three-dimensional structure of DNA contains various sequence-dependent structural information, which control many cellular processes in life, such as replication, transcription, DNA repair, etc. For the above functions, DNA double helices need to unwind or melt locally, which is different from terminal melting, as often seen in molecular dynamics (MD) simulations or even in many DNA crystal structures. We have carried out detailed MD simulations of DNA double helices of regular oligonucleotide fragments as well as in polymeric constructs with water and charge-neutralizing counter-ions at several different temperatures. We wanted to eliminate the end-effect or terminal melting propensity by employing MD simulation of DNA oligonucleotides in such a manner that gives rise to properties of polymeric DNA of infinite length. The polymeric construct is expected to allow us to see local melting at elevated temperatures. Comparative structural analysis of oligonucleotides and its corresponding virtual polymer at various temperatures ranging from 300 K to 400 K is discussed. The general behaviour, such as volume expansion coefficients of both the simulations show high similarity, indicating polymeric construct, does not give many artificial constraints. Local melting of a polymer, even at elevated temperature, may need a high nucleation energy that was not available in the short (7 ns) simulations. We expected to observe such nucleation followed by cooperative melting of the polymers in longer MD runs. Such simulations of different polymeric sequences would facilitate us to predict probable melting origins in a polymeric DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Albert B, Johnson A, Lewis J, Raff M, Roberts K and Walter P 2000 Molecular biology of the cell 4th edition (New York, Garland Science)

    Google Scholar 

  • Allen MP and Tildesley DJ 1987 Computer simulations of liquids (New York, Oxford University Press)

    Google Scholar 

  • Altan-Bonnet G, Libchaber A and Krichevsky O 2003 Bubble dynamics in double-stranded DNA. Phys. Rev. Lett. 90 138101

    Google Scholar 

  • Bandyopadhyay D 2005 Different non-local interactions in stabilizing nucleic acid structures, PhD thesis, University of Calcutta, Kolkata

  • Bansal M, Bhattacharyya D and Ravi B 1995 NUPARM and NUCGEN: Software for analysis and generation of sequence dependent nucleic acid structures. Comput. Appl. Biosci. 11 281–287

    PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN and Bourne PE 2000 The Protein Data Bank. Nucleic Acids Res. 28 235–242

  • Bhattacharyya D, Kundu S, Thakur AR and Majumdar R 1999 Sequence Directed flexibility of DNA and the role of cross-strand hydrogen bonds. J. Biomol. Struct. Dyn. 17 289–300

    Article  PubMed  CAS  Google Scholar 

  • Blake RD and Delcourt SG 1998 Thermal stability of DNA. Nucleic Acids Res. 26 3323–3332

    Google Scholar 

  • Blossey R and Carlon E 2003 Reparametrizing the loop entropy weights: Effect on DNA melting curves. Phys. Rev. E 68 061911

    Google Scholar 

  • Breslauer KJ, Frank R, Blocker and Marky LA 1986 Predicting DNA duplex stability from base sequence. Proc. Natl. Acad. Sci. USA 83 3746–3750

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S and Karplus M 1983 CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4 187–217

    Article  CAS  Google Scholar 

  • Chan SS, Austin RH, Mukerji I and Spiro TG 1997 Temperature-dependent ultraviolet resonance Raman spectroscopy of the premelting state of dA.dT DNA. Biophys. J. 72 1512–1520

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran R and Arnott S 1996 The structure of B-DNA in oriented fibres. J. Biomol. Struct. Dyn. 13 1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury S and Bansal M 2001 Modelling studies on neurodegenerative disease causing triplet repeat sequences d(GGC/GCC)n and d(CAG/CTG)n. J. Biosci. 26 649–665

    Article  PubMed  CAS  Google Scholar 

  • Darden T, York D and Pedersen L 1993 Particle mesh Ewald-an NlogN method for Ewald sums in large systems. J. Chem. Phys. 9 10089–10092

    Article  Google Scholar 

  • Dickerson RE, Bansal M, Calladine CR, Diekmann S, Hunter WN, Kennard O, et al. 1989 Definitions and nomenclature of nucleic acid structure parameters. EMBO J. 8 1–4

    Google Scholar 

  • Feller SE, Zhang Y, Pastor RW and Brooks BR 1995 Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 103 4613–4621

    Article  CAS  Google Scholar 

  • Foloppe N and MacKerell Jr AD 2000 All-atom empirical force field for nucleic acids: 1) Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21 86–104

    Article  CAS  Google Scholar 

  • Halder S and Bhattacharyya D 2010 Structural stability of tandemly occurring noncanonical basepairs within double helical fragments: molecular dynamics studies of functional RNA. J. Phys. Chem. B 114 14028–14040

    Google Scholar 

  • Hoover WG 1985 Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31 1695–1697

    Google Scholar 

  • Izanloo C, Parsafar GA, Abroshan H and Akbarzadeh H 2011 Denaturation of Drew–Dickerson DNA in a high salt concentration medium: Molecular dynamics simulations. J. Comput. Chem. 32 3354–3361

    Article  PubMed  CAS  Google Scholar 

  • Johansson E, Parkinson G and Neidle S 2000 A new crystal form for the dodecamer C-G-C-G-A-A-T-T-C-G-C-G: Symmetry effects on sequence-dependent DNA structure. J. Mol. Biol. 300 555–561

    Article  Google Scholar 

  • Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K and Schulten K 1999 NAMD2: greater scalability for parallel molecular dynamics. J. Comput. Phys. 151 283–312

    Article  CAS  Google Scholar 

  • Kannan S and Zacharias M 2009 Simulation of DNA double-strand dissociation and formation during replica-exchange molecular dynamics simulations. Phys. Chem. Chem. Phys. 11 10589–10595

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Malinina L, Huynh-Dinh T and Subirana JA 1998 The structure of the most studied DNA fragment changes under the influence of ions: a new packing of d(CGCGAATTCGCG). FEBS Lett. 438 211–214

    Google Scholar 

  • MacKerell AD and Banavali NK 2000 All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J. Comput. Chem. 21 105–120

    Article  CAS  Google Scholar 

  • Mukherjee S, Bansal M and Bhattacharyya D 2006 Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis. J. Comput. Aided Mol. Des. 20 629–645

    Google Scholar 

  • Nelson HC, Finch JT, Luisi BF and Klug A 1987 The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature 330 221–226

    Article  PubMed  CAS  Google Scholar 

  • Nelson M, Humphrey W, Gursoy A, Dalke A, Kalé L, Skeel R, Schulten K and Kufrin R. 1995 MDScope - A visual computing environment for structural biology. Comput. Phys. Commun. 91 111–134

    Article  CAS  Google Scholar 

  • Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinemann U, Lu XJ, et al. 2001 A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 313 229–237

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi SK and Desiraju GR 2007 Strong and weak hydrogen bonds in drug-DNA complexes: a statistical analysis. J. Biosci. 32 677–691

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi S, Pal R and Bhattacharyya D 2011 Structure and energy of non-canonical basepairs: comparison of various computational chemistry methods with crystallographic ensembles. J. Biomol. Struct. Dyn. 29 424–596

    Article  Google Scholar 

  • Premilat S and Albiser G 1997 X-ray fibre diffraction study of an elevated temperature structure of Poly(dA).Poly(dT). J. Mol. Biol. 274 64–71

    Article  PubMed  CAS  Google Scholar 

  • Samanta S, Mukherjee S, Chakrabarti, J and Bhattacharyya D 2009 Structural properties of polymeric DNA from molecular dynamics simulations. J. Chem. Phys. 130 115103–115114

    Article  PubMed  Google Scholar 

  • SantaLucia J, Allawi Jr HT and Seneviratne PA 1996 Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35 3555–3562

    Article  PubMed  CAS  Google Scholar 

  • Seibel GL, Singh UC and Kollman PA 1985 A molecular dynamics simulation of double-helical B-DNA including counterions and water. Proc. Natl. Acad. Sci. USA 82 6537–6540

    Google Scholar 

  • Sinden RR, Potaman VN, Oussatcheva EA, Pearson CE, Lyubchenko YL and Shlyakhtenko LS 2002 Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA. J. Biosci. 27 53–65

    Article  PubMed  CAS  Google Scholar 

  • Turner DH 1996 Thermodynamics of base pairing. Curr. Opin. Struct. Biol. 6 299–304

    Article  PubMed  CAS  Google Scholar 

  • Urpi L, Tereshko V, Malinina L, Huynh-Dinh T and Subirana JA 1996 Structural comparison between the d(CTAG) sequence in oligonucleotides and trp and met repressor-operator complexes. Nat. Struct. Biol. 3 325–328

    Article  PubMed  CAS  Google Scholar 

  • van Erp TS, Cuesta-Lopez S and Peyrard M 2006 Bubbles and denaturation in DNA. Eur. Phys. J. E 20 421–434

    Google Scholar 

  • Wartell RM and Benight AS 1985 Thermal denaturation of DNA molecules: A comparison of theory with experiment. Phys. Rep. 126 67–107

    Article  CAS  Google Scholar 

  • Wong KY and Pettitt BM 2008 The pathway of oligomeric DNA melting investigated by molecular dynamics simulations. Biophys. J. 95 5618–5626

    Article  PubMed  CAS  Google Scholar 

  • Yakushevich LV 2001 Is DNA a nonlinear dynamical system where solitary conformational waves are possible? J. Biosci. 26 305–313

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y and Zocchi G 2006 Mismatches and bubbles in DNA. Biophys. J. 90 4522–4529

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Bhattacharyya.

Additional information

[Kundu S, Mukherjee S and Bhattacharyya D 2012 Effect of temperature on DNA double helix: An insight from molecular dynamics simulation. J. Biosci. 37 1–11] DOI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, S., Mukherjee, S. & Bhattacharyya, D. Effect of temperature on DNA double helix: An insight from molecular dynamics simulation. J Biosci 37, 445–455 (2012). https://doi.org/10.1007/s12038-012-9215-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9215-5

Keywords

Navigation