Skip to main content
Log in

Possible scenarios of DNA double-helix unzipping process in single-molecule manipulation experiments

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

A Correction to this article was published on 06 March 2019

This article has been updated

Abstract

Single-molecule experiments on DNA unzipping are analyzed on the basis of the mobility of nucleic bases in complementary pairs. Two possible scenarios of DNA double-helix unzipping are proposed and studied, using the atom–atom potential function method. According to the first scenario, the base pairs transit into a ‘preopened’ metastable state and then fully open along the ‘stretch’ pathway. In this case, the DNA unzipping takes place slowly and as an equilibrium process, with the opening energies being similar to the energies obtained in thermodynamic experiments on DNA melting. The second scenario is characterized by higher opening forces. In this case, the DNA base pairs open directly along the ‘stretch’ pathway. It follows from our calculations that, in this scenario, the enthalpy difference between the A\(\cdot \)T and G\(\cdot \)C base pairs is much higher than in the first case. The features of the first unzipping scenario show that it can play a key role during the process of DNA genetic information transfer in vivo. It follows from our study that a peculiarity of the second scenario is that it can be used for the development of faster methods for reading genetic information in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 06 March 2019

    The original article was published with the following errors.

  • 06 March 2019

    The original article was published with the following errors.

References

  • Bockelmann U, Viasnoff V (2008) Theoretical study of sequence-dependent nanopore unzipping of DNA. Biophys J 94:2716–2724

    Article  CAS  Google Scholar 

  • Bockelmann U, Essevaz-Roulet B, Heslot F (1998a) DNA strand separation studied by single molecule force measurements. Phys Rev E 58(2):2386–2394

    Article  CAS  Google Scholar 

  • Bockelmann U, Essevaz-Roulet B, Heslot F (1998b) Molecular stick-slip motion revealed by opening DNA with Piconewton forces. Phys Rev Lett 79(22):4489–4492

    Article  Google Scholar 

  • Bockelmann U, Thomen Ph, Essevaz-Roulet B, Viasnoff V, Heslot F (2002) Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys J 82:1537–1553

    Article  CAS  Google Scholar 

  • Bockelmann U, Thomen P, Heslot F (2004) Dynamics of the DNA duplex formation studied by single molecule force measurements. Biophys J 87:3388–3396

    Article  CAS  Google Scholar 

  • Bustamante C, Keller D (1995) Scanning force microscopy in biology. Phys Today 48(12):32–38

    Article  Google Scholar 

  • Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10(3):279–285

    Article  CAS  Google Scholar 

  • Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421:423–427

    Article  Google Scholar 

  • Danilowicz C, Coljee VW, Bouzigues C, Lubensky DK, Nelson DR, Prentiss M (2003) DNA unzipped under a constant force exhibits multiple metastable intermediates. Proc Natl Acad Sci USA 100:1694–1699

    Article  CAS  Google Scholar 

  • Dans PD, Danilane L, Ivani I, Drsata T, Lankas F, Hospital A, Walther J, Pujagut RI, Battistini F, Gelpi JL, Lavery R, Orozco M (2016) Long-timescale dynamics of the Drew–Dickerson dodecamer. Nucl Acids Res 44(9):4052–4066

    Article  CAS  Google Scholar 

  • Diekmann RE (1989) Definitions and nomenclature of nucleic acid structure parameters. EMBO 8(1):1–4

    Article  Google Scholar 

  • Essevaz-Roulet B, Bockelmann U, Heslot F (1997) Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci USA 94:11935–11940

    Article  CAS  Google Scholar 

  • Frank-Kamenetskii MD, Prakash S (2014) Fluctuations in the DNA double helix: a critical review. Phys Life Rev 11:153–170

    Article  Google Scholar 

  • Giudice E, Vrnai P, Lavery R (2003) Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucl Acids Res 31(5):1434–1443

    Article  CAS  Google Scholar 

  • Hingerty BE, Ritchie RH, Ferrell TL, Turner JE (1985) Dielectric effects in biopolymers: the theory of ionic saturation revisited. Biopolymers 24:427–439

    Article  CAS  Google Scholar 

  • Huguet JM, Forns N, Ritort F (2009) Statistical properties of metastable intermediates in DNA unzipping. Phys Rev Lett 103:248106

    Article  CAS  Google Scholar 

  • Huguet JM, Bizarro CV, Forns N, Smith SB, Bustamante C, Ritort F (2010) Single-molecule derivation of salt dependent base-pair free energies in DNA. Proc Natl Acad Sci USA 107(35):15431–15436

    Article  CAS  Google Scholar 

  • Jose D, Datta K, Johnson NP, von Hippel PH (2009) Spectroscopic studies of position-specific DNA ‘breathing’ fluctuations at replication forks and primer-template junctions. PNAS 106(11):4231–4236

    Article  CAS  Google Scholar 

  • Kryachko ES, Volkov SN (2001) Preopening of the DNA base pairs. Int J Quantum Chem 82(4):193–204

    Article  CAS  Google Scholar 

  • Lavery R, Lebrun A, Allemand J-F, Bensimon D, Croquette V (2002) Structure and mechanics of single biomolecules: experiment and simulation. J Phys Condens Matter 14:383–414

    Article  Google Scholar 

  • Lubensky DK, Nelson DR (2000) Pulling pinned polymers and unzipping DNA. Phys Rev Lett 85:1572

    Article  CAS  Google Scholar 

  • Lubensky DK, Nelson DR (2002) Single molecule statistics and the polynucleotide unzipping transition. Phys Rev E 65:031917

    Article  Google Scholar 

  • Lukashin AV, Vologodskii AV, Frank-Kamenetskii MD, Lyubchenko YL (1976) Fluctuational opening of the double helix as revealed by theoretical and experimental study of DNA interaction with formaldehyde. J Mol Biol 108:665–682

    Article  CAS  Google Scholar 

  • Manghi M, Destainville N (2016) Physics of base-pairing dynamics in DNA. Phys Rep 631:141

    Article  Google Scholar 

  • Owczarzy R, You Y, Moreira BG, Manthey JA, Huang L, Behlke MA, Walder JA (2004) Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 43:3537–3554

    Article  CAS  Google Scholar 

  • Poltev VI, Shulyupina NV (1986) Simulation of interactions between nucleic acid bases by refined atom–atom potential functions. J Biomol Struct Dyn 3(4):739–765

    Article  CAS  Google Scholar 

  • Saenger W (1984) Principles of nucleic acids structure. Springer, Berlin

    Book  Google Scholar 

  • Simmons RM, Finer JT, Chu S, Spudich JA (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70:1813–1822

    Article  CAS  Google Scholar 

  • Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126

    Article  CAS  Google Scholar 

  • Thomen Ph, Bockelmann U, Heslot F (2002) Rotational drag on DNA: a single molecule experiment. Phys Rev Lett 88(24):248102

    Article  Google Scholar 

  • Volkov SN (1995) Pre-opened state of the DNA duplex. Mol Biol 29(5):1086–1094

    CAS  Google Scholar 

  • Volkov SN, Kosevich AM (1987) About the conformational vibrations of DNA. Mol Biol 21:797–806

    CAS  Google Scholar 

  • Volkov SN, Kosevich AM (1991) Theory of low-frequency vibrations in DNA macromolecules. J Biomol Struct Dyn 8:1069–1083

    Article  CAS  Google Scholar 

  • Volkov SN, Solovyov AV (2009) The mechanism of DNA mechanical unzipping. Eur Phys J D 54:657–666

    Article  CAS  Google Scholar 

  • Volkov SN, Kosevich AM, Weinreb GE (1989) Theoretical study of the low-frequency vibrations of DNA macromolecule. Biopolym Cell 5:32–39

    Article  CAS  Google Scholar 

  • Voulgarakis NK, Redondo A, Bishop AR, Rasmussen K (2006) Probing the mechanical unzipping of DNA. Phys Rev Lett 96:248101

    Article  CAS  Google Scholar 

  • Wartell RM, Benight AS (1985) Thermal denaturation of DNA molecules: a comparison of theory with experiment. Phys Rep 126(2):67–107

    Article  CAS  Google Scholar 

  • Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucl Acids Res 34(2):564–574

    Article  CAS  Google Scholar 

  • Zefirov UV, Zorkyi PM (1974) Van der Waals radii of atoms in crystal chemistry and structure chemistry. Zh Strukt Khimii 15:118–122

    CAS  Google Scholar 

  • Zhurkin VB, Poltev VI, Florent’ev VL (1980) Atom-atom potential functions for conformational calculations of nucleic acids. Mol Biol (USSR) 14:1116–1130

    CAS  Google Scholar 

Download references

Funding

The present work was partially supported by the Program of Fundamental Research of the Division of Physics and Astronomy of the National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksii Zdorevskyi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zdorevskyi, O., Volkov, S.N. Possible scenarios of DNA double-helix unzipping process in single-molecule manipulation experiments. Eur Biophys J 47, 917–924 (2018). https://doi.org/10.1007/s00249-018-1313-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-018-1313-3

Keywords

Navigation