Skip to main content
Log in

Is DNA a nonlinear dynamical system where solitary conformational waves are possible?

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

DNA is considered as a nonlinear dynamical system in which solitary conformational waves can be excited. The history of the approach, the main results, and arguments in favour and against are presented. Perspectives are discussed pertaining to studies of DNA’s nonlinear properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balanovski E and Beaconsfield P 1985 Solitonlike excitations in biological systems;Phys. Rev. 32 3059–3064

    Article  CAS  Google Scholar 

  • Barbi M, Cocco S, Peyrard M and Ruffo S 1999 A twist opening model for DNA;J. Biol. Phys. 24 97–114

    Article  CAS  Google Scholar 

  • Baverstock K F and Cundal R D 1989 Are solitons responsible for energy transfer in oriented DNA?;Int. J. Radiat. Biol. 55 152–153

    Google Scholar 

  • Bogolubskaya A A and Bogolubsky I L 1994 Two-component localized solutions in a nonlinear DNA model;Phys. Lett. A192 239–246

    Google Scholar 

  • Campa A and Giansanti A 1999 Melting of DNA oligomers: dynamical models and comparison with experimental results;J. Biol. Phys. 24 141–155

    Article  CAS  Google Scholar 

  • Crick F H C and Watson J D 1954 The complementary structure of deoxyribonucleic acid;Proc. R. Soc. (London) A223 80–96

    CAS  Google Scholar 

  • Dauxois T, Peyrard M and Willis C R 1992 Localized breatherlike solutions in a discrete Klein-Gordon model and application to DNA;Phys. Rev. D57 267–282

    Google Scholar 

  • Dauxois T 1991 Dynamics of breathers modes in a nonlinear helicoidal model of DNA;Phys. Lett. A159 390–395

    Google Scholar 

  • Edwards G S, Davis C C, Saffer J D and Swicord M L 1984 Resonant absorption of selected DNA molecules;Phys. Rev. Lett. 53 1284–1287

    Article  CAS  Google Scholar 

  • Englander S W, Kallenbach N R, Heeger A J, Krumhansl J A and Litwin A 1980 Nature of the open state in long polynucleotide double helices: possibility of soliton excitations;Proc. Natl. Acad. Sci. USA 77 7222–7226

    Article  PubMed  CAS  Google Scholar 

  • Fedyanin V K, Gochev I and Lisy V 1986 Nonlinear dynamics of bases in continual model of DNA double helices;Stud. Biophys. 116 59–64

    CAS  Google Scholar 

  • Fedyanin V K and Lisy V 1986 Soliton conformational excitations in DNA;Stud. Biophys. 116 65–71

    CAS  Google Scholar 

  • Frank-Kamenetskii M D 1987a How the double helix breathers;Nature (London) 328 17–18

    Article  CAS  Google Scholar 

  • Fedyanin V K and Yakushevich L V 1984 Scattering of neutrons and light by DNA solitons;Stud. Biophys. 103 171–178

    CAS  Google Scholar 

  • Frank-Kamenetskii M D 1987b Physicists retreat again;Nature (London) 328 108

    Article  CAS  Google Scholar 

  • Franklin R E and Gosling R G 1953 Molecular structure of nucleic acids. Molecular configuration in sodium thymonucleate;Nature (London) 171 740–741

    Article  CAS  Google Scholar 

  • Fritzshe H 1982 New structural and dynamic aspects of DNA as revealed by nuclear magnetic resonance;Commun. Mol. Biophys. 1 325–336

    Google Scholar 

  • Gaeta G 1990 On a model of DNA torsion dynamics.Phys. Lett. A143 227–232

    Google Scholar 

  • Gaeta G 1992 Solitons in planar and helicoidal Yakushevich model of DNA dynamics;Phys. Lett. A168 383–389

    Google Scholar 

  • Gaeta G 1999 Results and limitations of the soliton theory of DNA transcription;J. Biol. Phys. 24 81–56

    Article  CAS  Google Scholar 

  • Gaeta G, Reiss C, Peyrard M and Dauxois T 1994 Simple models of nonlinear DNA dynamics;Rev. Nuovo Cimento 17 1–48

    Article  Google Scholar 

  • Gonzalez J A and Martin-Landrove M 1994 Solitons in a nonlinear DNA model;Phys. Lett. A191 409–415

    Google Scholar 

  • Hai W 1994 Kink couples in deoxyribonucleic acid (DNA) double helices;Phys. Lett. A186 309–316

    Google Scholar 

  • Homma S 1999 Statistical mechanical theory of DNA denaturation;J. Biol. Phys. 24 115–129

    Article  CAS  Google Scholar 

  • Homma S and Takeno S 1984 A coupled base-rotator model for structure and dynamics of DNA;Prog. Theor. Phys. 72 679–693

    Article  CAS  Google Scholar 

  • Keepers J W and James Th L 1982 Models for DNA backbone motions: an interpretation of NMR relaxation experiments;J. Am. Chem. Soc. 104 929–939

    Article  CAS  Google Scholar 

  • Khan A, Bhaumic D and Dutta-Roy B 1985 The possible role of solitonic process during A to B conformational changes in DNA;Bull. Math. Biol. 47 783–789

    PubMed  CAS  Google Scholar 

  • Krumhansl J A and Alexander D M 1983 Nonlinear dynamics and conformational excitations in biomolecular materials; inStructure and dynamics: nucleic acids and proteins (eds) E Clementi and R H Sarma (New York: Adenine Press) pp 61–80

    Google Scholar 

  • Krumhansl J A, Wysin G M, Alexander D M, Garcia A, Lomdahl P S and Layne S P 1985 Further theoretical studies of nonlinear conformational motions in double-helix DNA; inStructure and motion: membranes, nucleic acids and proteins (eds) E Clementi, G Corongiu, M H Sarma and R H Sarma (New York: Adenine Press) pp 407–415

    Google Scholar 

  • Ladik J J, Suhai S and Seel M 1978 Electronic structure of biopolymers and possible mechanisms of chemical carcinogenesis;Int. J. Quant. Chem. QBS Suppl. 5 35–49

    CAS  Google Scholar 

  • McClure W R 1982 Mechanism and control of transcription in prokaryotes;Annu. Rev. Biochem. 54 171–204

    Article  Google Scholar 

  • McCommon J A and Harvey S C 1987Dynamics of proteins and nucleic acids (Cambridge: Cambridge University Press)

    Google Scholar 

  • Muto V, Holding J, Christiansen P L and Scott AC 1988 Solitons in DNA;J. Biomol. Struct. Dyn. 5 873–894

    PubMed  CAS  Google Scholar 

  • Muto V, Lomdahl P S and Christiansen P L 1990 Twodimensional discrete model for DNA dynamics: longitudinal wave propagation and denaturation;Phys. Rev. A42 7452–7458

    Google Scholar 

  • Muto V, Scott A S and Christiansen P L 1989 Thermally generated solitons in a Toda lattice model of DNA;Phys. Lett. A136 33–36

    Google Scholar 

  • Peyrard M (ed.) 1995Nonlinear excitations in biomolecules (Berlin: Springer)

    Google Scholar 

  • Peyrard M and Bishop A R 1989 Statistical mechanics of a nonlinear model for DNA denaturation;Phys. Rev. Lett. 62 2755–2758

    Article  PubMed  CAS  Google Scholar 

  • Polozov R V and Yakushevich L V 1988 Nonlinear waves in DNA and regulation of transcription;J. Theor. Biol. 130 423–430

    Article  PubMed  CAS  Google Scholar 

  • Prohofsky E W 1988 Solitons hiding in DNA and their possible significance in RNA transcription;Phys. Rev. A38 1538–1541

    Google Scholar 

  • Salerno M 1991 Discrete model for DNA-promotor dynamics;Phys. Rev. A44 5292–5297

    Google Scholar 

  • Scott A C 1985 Solitons in biological molecules;Comments Mol. Cell. Biol. 3 5–57

    Google Scholar 

  • Selvin P R, Cook D N, Pon N G, Bauer W R, Klein M P and Hearst J E 1992 Torsional rigidity of positively and negatively supercoiled DNA;Science 255 82–85

    Article  PubMed  CAS  Google Scholar 

  • Sobell H M 1984 Kink-antikink bound states in DNA structure; inBiological macromolecules and assemblies (eds) F A Jurnak and A McPherson (New York: John Wiley) pp 172–234

    Google Scholar 

  • Swicord M L and Davis C C 1982 Microwave absorption of DNA between 8 and 12 GHz;Biopolymers 21 2453–2460

    Article  PubMed  CAS  Google Scholar 

  • Swicord M L and Davis C C 1983 An optical method of investigating the microwave absorption characteristics of DNA and other biomolecules in solution;Bioelectromagnetics 4 21–42

    Article  PubMed  CAS  Google Scholar 

  • Takeno S and Homma S 1983 Topological solitons and modulated structure of bases in DNA double helices;Prog. Theor. Phys. 70 308–311

    Article  CAS  Google Scholar 

  • Van Zandt L L 1989 DNA soliton realistic parameters;Phys. Rev. A40 6134–6137

    Google Scholar 

  • Volkov S N 1990 Conformational transition. Dynamics and mechanism of long-range effects in DNA;J. Theor. Biol. 143 485–496

    PubMed  CAS  Google Scholar 

  • Watson J D and Crick F H C 1953 Molecular structure of nucleic acids. A structure of deoxyribose nucleic acid;Nature (London) 171 737–738

    Article  CAS  Google Scholar 

  • Webb S J and Booth A D 1969 Absorption of microwave by microorganisms;Nature (London) 222 1199–1200

    Article  CAS  Google Scholar 

  • Wilkins M H F, Seeds W E, Stokes A R and Wilson H R 1953 Helical structure of crystalline deoxypentose nucleic acid;Nature (London) 172 759–762

    Article  CAS  Google Scholar 

  • Yakushevich L V 1984 Scattering of neutrons and light by DNA solitons;Stud. Biophys. 103 171–178

    Google Scholar 

  • Yakushevich L V 1987 The effects of damping, external fields and inhomogeneity on the nonlinear dynamics of biopolymers;Stud. Biophys. 121 201–207

    CAS  Google Scholar 

  • Yakushevich L V 1989a Nonlinear DNA dynamics: a new model;Phys. Lett. A136 413–417

    Google Scholar 

  • Yakushevich L V 1989b DNA dynamics;Mol. Biol. (Russian J.) 23 652–662

    CAS  Google Scholar 

  • Yakushevich L V 1991 Investigation of a system of nonlinear equations simulating DNA torsional dynamics;Stud. Biophys. 140 163–170

    CAS  Google Scholar 

  • Yakushevich L V 1992 Non-linear DNA dynamics and problems of gene regulationNanobiology 1 343–350

    CAS  Google Scholar 

  • Yakushevich L V 1993 Nonlinear dynamics of biopolymers: theoretical models, experimental data;Q. Rev. Biophys. 26 201–223

    Article  PubMed  CAS  Google Scholar 

  • Yakushevich L V 1995 An exact solution to the system of nonlinear differential equations simulating torsional dynamics of DNA;Russian J. Phys. Chem. 69 1277–1280

    Google Scholar 

  • Yakushevich L V 1998Nonlinear physics of DNA (New York: Wiley)

    Google Scholar 

  • Yakushevich L V 1999 Dynamical form-factor of neutron scattering;J. Biol. Phys. 24 131–139

    Article  CAS  Google Scholar 

  • Yakushevich L V 2000 Nonlinear vector model of the internal DNA dynamics; inMathematical models of non-linear excitations, transfer, dynamics andcontrol in condensed systems and other media (eds) L V Uvarova, A E Arinstein and A V Latyshev (New York: Plenum) pp 93–100

    Google Scholar 

  • Yakushevich L V and Komarov V M 1998 On the parameters of the nonlinear mathematical equations imitating internal DNA dynamics;Math. Comput. Edu. (in Russian) 5 310–312

    Google Scholar 

  • Yomosa S 1983 Soliton excitations in deoxyribonucleic acid (DNA) double helices;Phys. Rev. A27 2120–2125

    Google Scholar 

  • Yomosa S 1984 Solitary excitations in deoxyribonucleic acid (DNA) double helices;Phys. Rev. A30 474–480

    Google Scholar 

  • Zhang Ch-T 1987 Soliton excitations in deoxyribonucleic acid (DNA) double helices;Phys. Rev. A35 886–891

    Google Scholar 

  • Zhang Ch-T 1989 Harmonic and subharmonic resonances of microwave absorption in DNA;Phys. Rev. A40 2148–2153

    Google Scholar 

  • Zhang Z and Olson W 1987 A model of the B-Z transition of DNA involving solitary excitations;Proceedings, 6th annual conference on nonlinearity of condensing matter, Los Alamos, New Maxico, 5–9 May 1986 (eds) A R Bishop, D K Campbell, P Kumar and S E Trullinger (Berlin: Springer) pp 265–270

    Google Scholar 

  • Zhou G-F and Zhang Ch-T 1991 A short review on the nonlinear motion in DNA;Phys. Scripta 43 347–352

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakushevich, L.V. Is DNA a nonlinear dynamical system where solitary conformational waves are possible?. J Biosci 26, 305–313 (2001). https://doi.org/10.1007/BF02703739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703739

Keywords

Navigation