Skip to main content
Log in

Acrylamide Induces Neurotoxicity in SH-SY5Y Cells via NLRP3-mediated Pyroptosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acrylamide (ACR), a soft electrophile, is a typical environmental and food contaminant that presents potential health hazards and, consequently, is attracting increasing attention in the quest for its control. ACR neurotoxicity has been widely reported in experimental animals and attributed to neuroinflammation; however, the mechanisms involved therein require clarification. In this study, we used a neuron cell model to investigate the mechanisms of ACR-induced neuroinflammation and pyroptosis. The results showed that ACR treatment induced lytic cell death morphologically under both the canonical pyroptotic pathway (NOD-like receptor protein 3 (NLRP3)-apoptosis-associated speck-like protein containing CARD (ASC)-cysteinyl aspartate specific proteinase 1 (caspase-1)-gasdermin D (GSDMD)-interleukin-1β (IL-1β)/interleukin-18 (IL-18)) and an alternative pyroptotic pathway (cysteinyl aspartate specific proteinase 3 (caspase-3)-gasdermin E (GSDME)-IL-1β/IL-18) in SH-SY5Y cells. Moreover, the lactate dehydrogenase (LDH) production, cytokines release, and lytic cell death induced by ACR were diminished by caspase-1 and -3 inhibitors. Furthermore, the knockdown of caspase-1 by small interfering RNA attenuated ACR-induced lytic cell death, suggesting that canonical pyroptosis (the NLRP3-caspase 1-GSDMD-IL-1β signaling axis) played a primary role in the ACR-induced pyroptosis. Of the two pyroptotic-related pathways, the NLRP3 inflammasome cascade was activated first within the 6-h period of ACR exposure, while the activation of the alternative pyroptotic pathway was delayed. Collectively, these results indicate that ACR mainly induces NLRP3-related neuroinflammation and pyroptosis in SH-SY5Y cells, which is, thus, suggestive of an alternative mechanism for ACR-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data in the current study are available from the corresponding authors upon reasonable request.

Abbreviations

ACR:

Acrylamide

ASC:

Apoptosis-associated speck-like protein containing CARD

Caspase-1:

Cysteinyl aspartate specific proteinase 1

Caspase-3:

Cysteinyl aspartate specific proteinase 3

DMSO:

Dimethyl sulfoxide

FBS:

Fetal bovine serum

GSDMD:

Gasdermin D

GSDME:

Gasdermin E

GSH:

Glutathione

IL-1β:

Interleukin-1β

IL-18:

Interleukin-18

LDH:

Lactate dehydrogenase

MDA:

Malondialdehyde

MEM:

Minimum essential medium

MTT:

3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide

NAC:

N-acetyl-L-cysteine

NLRP3:

NOD-like receptor protein 3

ROS:

Reactive oxygen species

TNF-α:

Tumor necrosis factor-α

References

  1. Exon JH (2006) A review of the toxicology of acrylamide. J Toxicol Environ Health B Crit Rev 9(5):397–412. https://doi.org/10.1080/10937400600681430

    Article  CAS  Google Scholar 

  2. Busova M, Bencko V, VeszelitsLakticova K, Holcatova I, Vargova M (2020) Risk of exposure to acrylamide. Cent Eur J Public Health 28(Suppl):S43–S46. https://doi.org/10.21101/cejph.a6177

    Article  CAS  Google Scholar 

  3. Uthra C, Shrivastava S, Jaswal A, Sinha N, Reshi MS, Shukla S (2017) Therapeutic potential of quercetin against acrylamide induced toxicity in rats. Biomed Pharmacother 86:705–714. https://doi.org/10.1016/j.biopha.2016.12.065

    Article  CAS  Google Scholar 

  4. An L, Li G, Si J, Zhang C, Han X, Wang S, Jiang L, Xie K (2016) Acrylamide retards the slow axonal transport of neurofilaments in rat cultured dorsal root ganglia neurons and the corresponding mechanisms. Neurochem Res 41(5):1000–1009. https://doi.org/10.1007/s11064-015-1782-z

    Article  CAS  Google Scholar 

  5. Mohr S, Stamler JS, Brüne B (1994) Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett 348(3):223–227. https://doi.org/10.1016/0014-5793(94)00596-6

    Article  CAS  Google Scholar 

  6. Murray SM, Waddell BM, Wu CW (2020) Neuron-specific toxicity of chronic acrylamide exposure in C. elegans. Neurotoxicol Teratol 77:106848. https://doi.org/10.1016/j.ntt.2019.106848

    Article  CAS  Google Scholar 

  7. Liu Z, Song G, Zou C, Liu G, Wu W, Yuan T, Liu X (2015) Acrylamide induces mitochondrial dysfunction and apoptosis in BV-2 microglial cells. Free Radic Biol Med 84:42–53. https://doi.org/10.1016/j.freeradbiomed.2015.03.013

    Article  CAS  Google Scholar 

  8. Lee JG, Wang YS, Chou CC (2014) Acrylamide-induced apoptosis in rat primary astrocytes and human astrocytoma cell lines. Toxicol In Vitro 28(4):562–570. https://doi.org/10.1016/j.tiv.2014.01.005

    Article  CAS  Google Scholar 

  9. Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26(2):83–94. https://doi.org/10.14573/altex.2009.2.83

    Article  Google Scholar 

  10. Zhao M, Wang FSL, Hu XS, Chen F, Chan HM (2017) Effect of acrylamide-induced neurotoxicity in a primary astrocytes/microglial co-culture model. Toxicol In Vitro 39:119–125. https://doi.org/10.1016/j.tiv.2016.11.007

    Article  CAS  Google Scholar 

  11. Zhao M, Wang P, Zhu Y, Liu X, Hu X, Chen F (2015) The chemoprotection of a blueberry anthocyanin extract against the acrylamide-induced oxidative stress in mitochondria: unequivocal evidence in mice liver. Food Funct 6(9):3006–3012. https://doi.org/10.1039/c5fo00408j

    Article  CAS  Google Scholar 

  12. Barber DS, LoPachin RM (2004) Proteomic analysis of acrylamide-protein adduct formation in rat brain synaptosomes. Toxicol Appl Pharmacol 201(2):120–136. https://doi.org/10.1016/j.taap.2004.05.008

    Article  CAS  Google Scholar 

  13. Santhanasabapathy R, Vasudevan S, Anupriya K, Pabitha R, Sudhandiran G (2015) Farnesol quells oxidative stress, reactive gliosis and inflammation during acrylamide-induced neurotoxicity: behavioral and biochemical evidence. Neuroscience 308:212–227. https://doi.org/10.1016/j.neuroscience.2015.08.067

    Article  CAS  Google Scholar 

  14. Yan D, Pan X, Yao J, Wang D, Wu X, Chen X, Shi N, Yan H (2019) MAPKs and NF-kappaB-mediated acrylamide-induced neuropathy in rat striatum and human neuroblastoma cells SY5Y. J Cell Biochem 120(3):3898–3910. https://doi.org/10.1002/jcb.27671

    Article  CAS  Google Scholar 

  15. Sui X, Yang J, Zhang G, Yuan X, Li W, Long J, Luo Y, Li Y, Wang Y (2020) NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology 432:152392. https://doi.org/10.1016/j.tox.2020.152392

    Article  CAS  Google Scholar 

  16. Zhao M, Deng L, Lu X, Fan L, Zhu Y, Zhao L (2022) The involvement of oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation in acrylamide-induced neurotoxicity in C57/BL6 mice. Environ Sci Pollut Res Int 29(27):41151–41167. https://doi.org/10.1007/s11356-021-18146-2

    Article  CAS  Google Scholar 

  17. Hanamsagar R, Torres V, Kielian T (2011) Inflammasome activation and IL-1beta/IL-18 processing are influenced by distinct pathways in microglia. J Neurochem 119(4):736–748. https://doi.org/10.1111/j.1471-4159.2011.07481.x

    Article  CAS  Google Scholar 

  18. Afonina IS, Zhong Z, Karin M, Beyaert R (2017) Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome. Nat Immunol 18(8):861–869. https://doi.org/10.1038/ni.3772

    Article  CAS  Google Scholar 

  19. Wu AG, Zhou XG, Qiao G, Yu L, Tang Y, Yan L, Qiu WQ, Pan R, Yu CL, Law BY, Qin DL, Wu JM (2021) Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Res Rev 65:101202. https://doi.org/10.1016/j.arr.2020.101202

    Article  CAS  Google Scholar 

  20. Liu Y, Zhang X, Yan D, Wang Y, Wang N, Liu Y, Tan A, Chen X, Yan H (2020) Chronic acrylamide exposure induced glia cell activation, NLRP3 infl-ammasome upregulation and cognitive impairment. Toxicol Appl Pharmacol 393:114949. https://doi.org/10.1016/j.taap.2020.114949

    Article  CAS  Google Scholar 

  21. Peng D, Li J, Deng Y, Zhu X, Zhao L, Zhang Y, Li Z, Ou S, Li S, Jiang Y (2020) Sodium para-aminosalicylic acid inhibits manganese-induced NLRP3 inflammasome-dependent pyroptosis by inhibiting NF-kappaB pathway activation and oxidative stress. J Neuroinflammation 17(1):343. https://doi.org/10.1186/s12974-020-02018-6

    Article  CAS  Google Scholar 

  22. Wang Y, Yin B, Li D, Wang G, Han X, Sun X (2018) GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem Biophys Res Commun 495(1):1418–1425. https://doi.org/10.1016/j.bbrc.2017.11.156

    Article  CAS  Google Scholar 

  23. Xia W, Li Y, Wu M, Jin Q, Wang Q, Li S, Huang S, Zhang A, Zhang Y, Jia Z (2021) Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation. Cell Death Dis 12(2):139. https://doi.org/10.1038/s41419-021-03431-2

    Article  CAS  Google Scholar 

  24. Alrashidi H, Eaton S, Heales S (2021) Biochemical characterization of proliferative and differentiated SH-SY5Y cell line as a model for Parkinson’s disease. Neurochem Int 145:105009. https://doi.org/10.1016/j.neuint.2021.105009

    Article  CAS  Google Scholar 

  25. Deng L, Zhao M, Cui Y, Xia Q, Jiang L, Yin H, Zhao L (2021) Acrylamide induces intrinsic apoptosis and inhibits protective autophagy via the ROS mediated mitochondrial dysfunction pathway in U87-MG cells. Drug Chem Toxicol:1–12. https://doi.org/10.1080/01480545.2021.1979030

  26. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99–103. https://doi.org/10.1038/nature22393

    Article  CAS  Google Scholar 

  27. Pei P, Yao X, Jiang L, Qiu T, Wang N, Yang L, Gao N, Wang Z, Yang G, Liu X, Liu S, Jia X, Tao Y, Wei S, Sun X (2019) Inorganic arsenic induces pyroptosis and pancreatic beta cells dysfunction through stimulating the IRE1alpha/TNF-alpha pathway and protective effect of taurine. Food Chem Toxicol 125:392–402. https://doi.org/10.1016/j.fct.2019.01.015

    Article  CAS  Google Scholar 

  28. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73(17):3221–3247. https://doi.org/10.1007/s00018-016-2223-0

    Article  CAS  Google Scholar 

  29. Shen X, Wang H, Weng C, Jiang H, Chen J (2021) Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity. Cell Death Dis 12(2):186. https://doi.org/10.1038/s41419-021-03458-5

    Article  CAS  Google Scholar 

  30. Zong C, Hasegawa R, Urushitani M, Zhang L, Nagashima D, Sakurai T, Ichihara S, Ohsako S, Ichihara G (2019) Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro. Arch Toxicol 93(7):2007–2019. https://doi.org/10.1007/s00204-019-02471-0

    Article  CAS  Google Scholar 

  31. Sivandzade F, Cucullo L (2021) Regenerative stem cell therapy for neurodegenerative diseases: an overview. Int J Mol Sci 22(4):2153. https://doi.org/10.3390/ijms22042153

    Article  CAS  Google Scholar 

  32. An H, Heo JS, Kim P, Lian Z, Lee S, Park J, Hong E, Pang K, Park Y, Ooshima A, Lee J, Son M, Park H, Wu Z, Park KS, Kim SJ, Bae I, Yang KM (2021) Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis 12(2):159. https://doi.org/10.1038/s41419-021-03454-9

    Article  CAS  Google Scholar 

  33. Abedpoor N, Taghian F, Hajibabaie F (2022) Cross brain-gut analysis highlighted hub genes and lncRNA networks differentially modified during leucine consumption and endurance exercise in mice with depression-like behaviors. Mol Neurobiol 59(7):4106–4123. https://doi.org/10.1007/s12035-022-02835-1

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation for Young Scientists of China (No. 31801668), the Shanghai PuJiang Program (18J1401900), and the Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism (Shanghai Municipal Education Commission).

Author information

Authors and Affiliations

Authors

Contributions

Zhao Mengyao: conceptualization, methodology, original draft preparation, writing – review and editing, project administration, funding acquisition.

Zhang Boya: investigation, writing – review and editing.

Deng Linlin: validation, visualization.

Zhao Liming: funding acquisition, project administration, supervision.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liming Zhao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 638 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Zhang, B., Deng, L. et al. Acrylamide Induces Neurotoxicity in SH-SY5Y Cells via NLRP3-mediated Pyroptosis. Mol Neurobiol 60, 596–609 (2023). https://doi.org/10.1007/s12035-022-03098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03098-6

Keywords

Navigation