Skip to main content

Advertisement

Log in

Acrylamide Retards the Slow Axonal Transport of Neurofilaments in Rat Cultured Dorsal Root Ganglia Neurons and the Corresponding Mechanisms

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic acrylamide (ACR) exposure induces peripheral-central axonopathy in occupational workers and laboratory animals, but the underlying mechanisms remain unclear. In this study, we first investigated the effects of ACR on slow axonal transport of neurofilaments in cultured rat dorsal root ganglia (DRG) neurons through live-cell imaging approach. Then for the underlying mechanisms exploration, the protein level of neurofilament subunits, motor proteins kinesin and dynein, and dynamitin subunit of dynactin in DRG neurons were assessed by western blotting and the concentrations of ATP was detected using ATP Assay Kit. The results showed that ACR treatment results in a dose-dependent decrease of slow axonal transport of neurofilaments. Furthermore, ACR intoxication significantly increases the protein levels of the three neurofilament subunits (NF-L, NF-M, NF-H), kinesin, dynein, and dynamitin subunit of dynactin in DRG neurons. In addition, ATP level decreased significantly in ACR-treated DRG neurons. Our findings indicate that ACR exposure retards slow axonal transport of NF-M, and suggest that the increase of neurofilament cargoes, motor proteins, dynamitin of dynactin, and the inadequate ATP supply contribute to the ACR-induced retardation of slow axonal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACR:

Acrylamide

DRG:

Dorsal root ganglia

NF:

Neurofilament

NF-H:

Neurofilament heavy subunit

NF-M:

Neurofilament middle subunit

NF-L:

Neurofilament light subunit

ATP:

Adenosine triphosphate

KHC:

Kinesin heavy chain

NGF:

Nerve growth factor

IPP:

Image-pro plus

PBS:

Phosphate-buffered saline

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

References

  1. Pennisi M, Malaguarnera G, Puglisi V, Vinciguerra L, Vacante M, Malaguarnera M (2013) Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health 10:3843–3854

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lehning E, Balaban C, Ross J, Reid M, LoPachin R (2002) Acrylamide neuropathy I. Spatiotemporal characteristics of nerve cell damage in rat cerebellum. Neurotoxicology 23:397–414

    Article  CAS  PubMed  Google Scholar 

  3. LoPachin RM, Balaban CD, Ross JF (2003) Acrylamide axonopathy revisited. Toxicol Appl Pharmacol 188:135–153

    Article  CAS  PubMed  Google Scholar 

  4. Schaumburg HH, Spencer PS (1976) The neurology and neuropathology of the occupational neuropathies. J Occup Med 18:739–742

    Article  CAS  PubMed  Google Scholar 

  5. Yu S, Son F, Yu J, Zhao X, Yu L, Li G, Xie K (2006) Acrylamide alters cytoskeletal protein level in rat sciatic nerves. Neurochem Res 31:1197–1204

    Article  CAS  PubMed  Google Scholar 

  6. Miller CCJ, Ackerley S, Brownlees J, Grierson AJ, Jacobsen NJO, Thornhill P (2002) Axonal transport of neurofilaments in normal and disease states. Cell Mol Life Sci 59:323–330

    Article  CAS  PubMed  Google Scholar 

  7. Brown A, Wang L, Jung P (2005) Stochastic simulation of neurofilament transport in axons: the “stop-and-go” hypothesis. Mol Biol Cell 16:4243–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trivedi N, Jung P, Brown A (2007) Neurofilaments switch between distinct mobile and stationary states during their transport along axons. J Neurosci 27:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan Y, Brown A (2005) Neurofilament polymer transport in axons. J Neurosci 25:7014–7021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown A (2003) Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J Cell Biol 160:817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yuan A, Rao MV, Veeranna Nixon RA (2012) Neurofilaments at a glance. J Cell Sci 125:3257–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chevalier-Larsen E, Holzbaur EL (2006) Axonal transport and neurodegenerative disease. Biochim Biophys Acta 1762:1094–1108

    Article  CAS  PubMed  Google Scholar 

  13. Bradley W, Williams M (1973) Axoplasmic flow in axonal neuropathies. I. Axoplasmic flow in cats with toxic neuropathies. Brain 96:235–246

    Article  CAS  PubMed  Google Scholar 

  14. Gold BG, Griffin JW, Price DL (1985) Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration. J Neurosci 5:1755–1768

    CAS  PubMed  Google Scholar 

  15. Pleasure DE, Mishler KC, Engel WK (1969) Axonal transport of proteins in experimental neuropathies. Science 166:524–525

    Article  CAS  PubMed  Google Scholar 

  16. Sabri MI, Spencer PS (1990) Acrylamide impairs fast and slow axonal transport in rat optic system. Neurochem Res 15:603–608

    Article  CAS  PubMed  Google Scholar 

  17. Sidenius P, Jakobsen J (1983) Anterograde axonal transport in rats during intoxication with acrylamide. J Neurochem 40:697–704

    Article  CAS  PubMed  Google Scholar 

  18. Brown A (2003) Live-cell imaging of slow axonal transport in cultured neurons. Methods Cell Biol 71:305–323

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han XY, Cheng D, Song FY, Zeng T, An LH, Xie KQ (2014) Decelerated transport and its mechanism of 2,5-hexanedione on middle-molecular-weight neurofilament in rat dorsal root ganglia cells. Neuroscience 269:192–198

    Article  CAS  PubMed  Google Scholar 

  20. Patterson GH, Lippincott-Schwartz J (2002) Photoactivatable green fluorescent protein. Biophys J 82:492a–492a

    Google Scholar 

  21. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  CAS  PubMed  Google Scholar 

  22. Flynn KC, Pak CW, Shaw AE, Bradke F, Bamburg JR (2009) Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev Neurobiol 69:761–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spencer P, Schaumburg H (1974) A review of acrylamide neurotoxicity. Part I. Properties, uses and human exposure. Can J Neurol Sci 1:143–150

    CAS  PubMed  Google Scholar 

  24. Duncan JE, Goldstein LSB (2006) The genetics of axonal transport and axonal transport disorders. PLoS Genet 2:1275–1284

    Article  CAS  Google Scholar 

  25. Gennerich A, Vale RD (2009) Walking the walk: how kinesin and dynein coordinate their steps. Curr Opin Cell Biol 21:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacomy H, Zhu Q, Couillard-Despres S, Beaulieu JM, Julien JP (1999) Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. J Neurochem 73:972–984

    Article  CAS  PubMed  Google Scholar 

  27. Julien J-P (1999) Neurofilament functions in health and disease. Curr Opin Neurobiol 9:554–560

    Article  CAS  PubMed  Google Scholar 

  28. Zhang L, Gavin T, DeCaprio AP, LoPachin RM (2010) Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons. Toxicol Sci 117:180–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barry DM, Millecamps S, Julien JP, Garcia ML (2007) New movements in neurofilament transport, turnover and disease. Exp Cell Res 313:2110–2120

    Article  CAS  PubMed  Google Scholar 

  30. Lin WW, Friedman MA, Wang X-F, Abou-Donia MB (2000) Acrylamide-regulated neurofilament expression in rat pheochromocytoma cells. Brain Res 852:294–304

    Article  Google Scholar 

  31. Uchida A, Alami NH, Brown A (2009) Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol Biol Cell 20:4997–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martenson CH, Odom A, Sheetz MP, Graham DG (1995) The effect of acrylamide and other sulfhydryl alkylators on the ability of dynein and kinesin to translocate microtubules in vitro. Toxicol Appl Pharmacol 133:73–81

    Article  CAS  PubMed  Google Scholar 

  33. Sickles DW, Sperry AO, Testino A, Friedman M (2007) Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle. Toxicol Appl Pharmacol 222:111–121

    Article  CAS  PubMed  Google Scholar 

  34. Sickles D, Brady S, Testino A, Friedman M, Wrenn R (1996) Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. J Neurosci Res 46:7–17

    Article  CAS  PubMed  Google Scholar 

  35. Friedman M, Zeiger E, Marron ID, Sickles D (2008) Inhibition of rat testicular nuclear kinesins (krp2; KIFC5A) by acrylamide as a basis for establishing a genotoxicity threshold. J Agric Food Chem 56:6024–6030

    Article  CAS  PubMed  Google Scholar 

  36. Schroer TA, Schnapp BJ, Reese TS, Sheetz MP (1988) The role of kinesin and other soluble factors in organelle movement along microtubules. J Cell Biol 107:1785–1792

    Article  CAS  PubMed  Google Scholar 

  37. Brady ST, Pfister KK, Bloom GS (1990) A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proc Natl Acad Sci USA 87:1061–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stenoien DL, Brady ST (1997) Immunochemical analysis of kinesin light chain function. Mol Biol Cell 8:675–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deacon SW, Serpinskaya AS, Vaughan PS, Lopez Fanarraga M, Vernos I, Vaughan KT, Gelfand VI (2003) Dynactin is required for bidirectional organelle transport. J Cell Biol 160:297–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Melkonian KA, Maier KC, Godfrey JE, Rodgers M, Schroer TA (2007) Mechanism of dynamitin-mediated disruption of dynactin. J Biol Chem 282:19355–19364

    Article  CAS  PubMed  Google Scholar 

  41. Kwinter DM, Lo K, Mafi P, Silverman MA (2009) Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons. Neuroscience 162:1001–1010

    Article  CAS  PubMed  Google Scholar 

  42. Valetti C, Wetzel DM, Schrader M, Hasbani MJ, Gill SR, Kreis TE, Schroer TA (1999) Role of dynactin in endocytic Traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol Biol Cell 10:4107–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Echeverri CJ, Paschal BM, Vaughan KT, VaUee RB (1996) Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol 132:617–633

    Article  CAS  PubMed  Google Scholar 

  44. Wang ZX, Tan L, Yu JT (2014) Axonal transport defects in Alzheimer’s disease. Mol Neurobiol. doi:10.1007/s12035-014-8810-x

    Google Scholar 

  45. Sakama R, Hiruma H, Kawakami T (2003) Effects of extracellular atp on axonal transport in cultured mouse dorsal root ganglion neurons. Neuroscience 121:531–535

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka F, Ikenaka K, Sobue G (2011) Role of axonal transport in ALS. Clin Neurol 51:1189–1191

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Anthony Brown (Ohio State University, Columbus, USA) for his generous gifts of pPA-GFP-NF-M plasmid and DsRed plasmid. The authors also thank Paula McKinney, Niraj Trivedi, Neal (Ohio State University) for technical assistance. This study was supported by the National Science Foundation of China (30872134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqin Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, L., Li, G., Si, J. et al. Acrylamide Retards the Slow Axonal Transport of Neurofilaments in Rat Cultured Dorsal Root Ganglia Neurons and the Corresponding Mechanisms. Neurochem Res 41, 1000–1009 (2016). https://doi.org/10.1007/s11064-015-1782-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1782-z

Keywords

Navigation