Skip to main content

Advertisement

Log in

The Protective A673T Mutation of Amyloid Precursor Protein (APP) in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is a progressive neurodegenerative disorder characterized by extracellular amyloid beta peptides and neurofibrillary tangles consisted of intracellular hyperphosphorylated Tau in the hippocampus and cerebral cortex. Most of the mutations in key genes that code for amyloid precursor protein can lead to significant accumulation of these peptides in the brain and cause Alzheimer’s disease. Moreover, some point mutations in amyloid precursor protein can cause familial Alzheimer’s disease, such as Swedish mutation (KM670/671NL) and A673V mutation. However, recent studies have found that the A673T mutation in amyloid precursor protein gene can protect against Alzheimer’s disease, even if it is located next to the Swedish mutation (KM670/671NL) and at the same site as A673V mutation, which are pathogenic. It makes us curious about the protective A673T mutation. Here, we summarize the most recent insights of A673T mutation, focus on their roles in protective mechanisms against Alzheimer’s disease, and discuss their involvement in future treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable

Code Availability

Not applicable

References

  1. Association As (2020) 2020 Alzheimer’s disease facts and figures. Alzheimers Dement 16(3):391–460. https://doi.org/10.1002/alz.12068

    Article  Google Scholar 

  2. Soldano A, Hassan BA (2014) Beyond pathology: APP, brain development and Alzheimer’s disease. Curr Opin Neurobiol 27:61–67. https://doi.org/10.1016/j.conb.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  3. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers 1. https://doi.org/10.1038/nrdp.2015.56

  4. Ossenkoppele R, Pijnenburg YAL, Perry DC, Cohn-Sheehy BI, Scheltens NME, Vogel JW, Kramer JH, Van Der Vlies AE et al (2015) The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain 138(9):2732–2749. https://doi.org/10.1093/brain/awv191

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185. https://doi.org/10.1126/science.1566067

    Article  CAS  PubMed  Google Scholar 

  6. Kent SA, Spires-Jones TL, Durrant CS (2020) The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol 140(4):417–447. https://doi.org/10.1007/s00401-020-02196-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15(1):40. https://doi.org/10.1186/s13024-020-00391-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179(2):312–339. https://doi.org/10.1016/j.cell.2019.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235(4791):877–880. https://doi.org/10.1126/science.3810169

    Article  CAS  PubMed  Google Scholar 

  10. Tanzi RE, Gusella JF, Watkins PC, Bruns GAP, St. George-Hyslop P, Van Keuren ML, Patterson D, Pagan S et al (1987) Amyloid β protein gene: CDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235(4791):880–884. https://doi.org/10.1126/science.2949367

    Article  CAS  PubMed  Google Scholar 

  11. Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer’s disease. Mol Brain 4(1). https://doi.org/10.1186/1756-6606-4-3

  12. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4(11):2757–2763. https://doi.org/10.1002/j.1460-2075.1985.tb04000.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ling Y, Morgan K, Kalsheker N (2003) Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. Int J Biochem Cell Biol 35:1505–1535. https://doi.org/10.1016/S1357-2725(03)00133-X

    Article  CAS  PubMed  Google Scholar 

  14. Kaminsky YG, Marlatt MW, Smith MA, Kosenko EA (2010) Subcellular and metabolic examination of amyloid-β peptides in Alzheimer disease pathogenesis: evidence for Aβ25-35. Exp Neurol 221:26–37. https://doi.org/10.1016/j.expneurol.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  15. Tycko R (2016) Molecular structure of aggregated amyloid-β: insights from solid-state nuclear magnetic resonance. Cold Spring Harb Perspect Med 6(8). https://doi.org/10.1101/cshperspect.a024083

  16. Watts JC, Prusiner SB (2018) β-amyloid prions and the pathobiology of Alzheimer’s disease. Cold Spring Harbor Perspectives in. Medicine 8(5). https://doi.org/10.1101/cshperspect.a023507

  17. Kimura A, Hata S, Suzuki T (2016) Alternative selection of beta-site APP-cleaving enzyme 1 (BACE1) cleavage sites in amyloid beta-protein precursor (APP) harboring protective and pathogenic mutations within the Abeta sequence. J Biol Chem 291(46):24041–24053. https://doi.org/10.1074/jbc.M116.744722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. St George-Hyslop PH (2000) Molecular genetics of Alzheimer’s disease. Biol Psychiatry 47:183–199. https://doi.org/10.1016/S0006-3223(99)00301-7

    Article  CAS  PubMed  Google Scholar 

  19. Bertram L, Tanzi RE (2012) The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 107:79–100. https://doi.org/10.1016/B978-0-12-385883-2.00008-4

    Article  CAS  PubMed  Google Scholar 

  20. Hatami A, Monjazeb S, Milton S, Glabe CG (2017) Familial Alzheimer’s disease mutations within the amyloid precursor protein alter the aggregation and conformation of the amyloid-β peptide. J Biol Chem 292(8):3172–3185. https://doi.org/10.1074/jbc.M116.755264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P et al (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488(7409):96–99. https://doi.org/10.1038/nature11283

    Article  CAS  PubMed  Google Scholar 

  22. Kero M, Paetau A, Polvikoski T, Tanskanen M, Sulkava R, Jansson L, Myllykangas L, Tienari PJ (2013) Amyloid precursor protein (APP) A673T mutation in the elderly Finnish population. Neurobiol Aging 34(5):1518.e1511–1518.e1513. https://doi.org/10.1016/j.neurobiolaging.2012.09.017

    Article  CAS  Google Scholar 

  23. Evert J, Lawler E, Bogan H, Perls T (2003) Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol Ser A Biol Med Sci 58(3):M232–M237. https://doi.org/10.1093/gerona/58.3.m232

    Article  Google Scholar 

  24. Martiskainen H, Herukka S-K, Stančáková A, Paananen J, Soininen H, Kuusisto J, Laakso M, Hiltunen M (2017) Decreased plasma β-amyloid in the Alzheimer’s disease APP A673T variant carriers. Ann Neurol 82(1):128–132. https://doi.org/10.1002/ana.24969

    Article  CAS  PubMed  Google Scholar 

  25. Mengel-From J, Jeune B, Pentti T, McGue M, Christensen K, Christiansen L (2015) The APP A673T frequency differs between Nordic countries. Neurobiol Aging 36(10):2909.e2901–2909.e2904. https://doi.org/10.1016/j.neurobiolaging.2015.07.011

    Article  CAS  Google Scholar 

  26. Wang LS, Naj AC, Graham RR, Crane PK, Kunkle BW, Cruchaga C, Gonzalez Murcia JD, Cannon-Albright L et al (2015) Rarity of the Alzheimer disease-protective APP A673T variant in the United States. JAMA Neurol 72(2):209–216. https://doi.org/10.1001/jamaneurol.2014.2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bamne MN, Demirci FY, Berman S, Snitz BE, Rosenthal SL, Wang X, Lopez OL, Kamboh MI (2014) Investigation of an amyloid precursor protein protective mutation (A673T) in a North American case-control sample of late-onset Alzheimer’s disease. Neurobiol Aging 35(7):1779.e1715–1779.e1716. https://doi.org/10.1016/j.neurobiolaging.2014.01.020

    Article  CAS  Google Scholar 

  28. Ting SKS, Chong MS, Kandiah N, Hameed S, Tan L, Au WL, Prakash KM, Pavanni R et al (2013) Absence of A673T amyloid-β precursor protein variant in Alzheimer’s disease and other neurological diseases. Neurobiol Aging 34(10):2441.e2447–2441.e2448. https://doi.org/10.1016/j.neurobiolaging.2013.04.012

    Article  CAS  Google Scholar 

  29. Liu YW, He YH, Zhang YX, Cai WW, Yang LQ, Xu LY, Kong QP (2014) Absence of A673T variant in APP gene indicates an alternative protective mechanism contributing to longevity in Chinese individuals. Neurobiol Aging 35(4):935.e911–935.e912. https://doi.org/10.1016/j.neurobiolaging.2013.09.023

    Article  CAS  Google Scholar 

  30. Di Fede G, Catania M, Morbin M, Rossi G, Suardi S, Mazzoleni G, Merlin M, Giovagnoli AR et al (2009) A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 323(5920):1473–1477. https://doi.org/10.1126/science.1168979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giliberto L, Borghi R, Piccini A, Mangerini R, Sorbi S, Cirmena G, Garuti A, Ghetti B et al (2009) Mutant presenilin 1 increases the expression and activity of BACE1. J Biol Chem 284(14):9027–9038. https://doi.org/10.1074/jbc.M805685200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maloney JA, Bainbridge T, Gustafson A, Zhang S, Kyauk R, Steiner P, Van Der Brug M, Liu Y et al (2014) Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J Biol Chem 289(45):30990–31000. https://doi.org/10.1074/jbc.M114.589069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kokawa A, Ishihara S, Fujiwara H, Nobuhara M, Iwata M, Ihara Y, Funamoto S (2015) The A673T mutation in the amyloid precursor protein reduces the production of β-amyloid protein from its β-carboxyl terminal fragment in cells. Acta Neuropathol Commun 3:66–66. https://doi.org/10.1186/s40478-015-0247-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Willem M, Tahirovic S, Busche MA, Ovsepian SV, Chafai M, Kootar S, Hornburg D, Evans LDB et al (2015) η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 526(7573):443–447. https://doi.org/10.1038/nature14864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu J, Wang S, Bu D, Xu J (2018) Protein threading using residue co-variation and deep learning. Bioinformatics 34(13):i263–i273. https://doi.org/10.1093/bioinformatics/bty278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu J (2019) Distance-based protein folding powered by deep learning. Proc Natl Acad Sci U S A 116(34):16856–16865. https://doi.org/10.1073/pnas.1821309116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7(8):1511–1522. https://doi.org/10.1038/nprot.2012.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma J, Peng J, Wang S, Xu J (2012) A conditional neural fields model for protein threading. Bioinformatics 28(12):i59–i66. https://doi.org/10.1093/bioinformatics/bts213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma J, Wang S, Zhao F, Xu J (2013) Protein threading using context-specific alignment potential. Bioinformatics 29(13):i257–i265. https://doi.org/10.1093/bioinformatics/btt210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43(W1):W389–W394. https://doi.org/10.1093/nar/gkv332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang S, Wang Z, Cai F, Zhang M, Wu Y, Zhang J, Song W (2017) BACE1 cleavage site selection critical for amyloidogenesis and Alzheimer’s pathogenesis. J Neurosci 37(29):6915–6925. https://doi.org/10.1523/JNEUROSCI.0340-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tambini MD, Norris KA, D'Adamio L (2020) Opposite changes in APP processing and human Abeta levels in rats carrying either a protective or a pathogenic APP mutation. Elife 9. https://doi.org/10.7554/eLife.52612

  43. Guyon A, Rousseau J, Lamothe G, Tremblay JP (2020) The protective mutation A673T in amyloid precursor protein gene decreases Aβ peptides production for 14 forms of familial Alzheimer’s disease in SH-SY5Y cells. PLoS One 15(12):e0237122. https://doi.org/10.1371/journal.pone.0237122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shah S, Lee S-F, Tabuchi K, Hao Y-H, Yu C, LaPlant Q, Ball H, Dann CE et al (2005) Nicastrin functions as a gamma-secretase-substrate receptor. Cell 122(3):435–447. https://doi.org/10.1016/j.cell.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  45. Funamoto S, Sasaki T, Ishihara S, Nobuhara M, Nakano M, Watanabe-Takahashi M, Saito T, Kakuda N et al (2013) Substrate ectodomain is critical for substrate preference and inhibition of γ-secretase. Nat Commun 4:2529. https://doi.org/10.1038/ncomms3529

    Article  CAS  PubMed  Google Scholar 

  46. Hur JY, Welander H, Behbahani H, Aoki M, Franberg J, Winblad B, Frykman S, Tjernberg LO (2008) Active gamma-secretase is localized to detergent-resistant membranes in human brain. FEBS J 275(6):1174–1187. https://doi.org/10.1111/j.1742-4658.2008.06278.x

    Article  CAS  PubMed  Google Scholar 

  47. Fagan AM, Younkin LH, Morris JC, Fryer JD, Cole TG, Younkin SG, Holtzman DM (2000) Differences in the Aβ40/Aβ42 ratio associated with cerebrospinal fluid lipoproteins as a function of apolipoprotein E genotype. Ann Neurol 48(2):201–210. https://doi.org/10.1002/1531-8249(200008)48:2<201::AID-ANA10>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  48. Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, Ayutyanont N, Keppler J et al (2009) Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 106(16):6820–6825. https://doi.org/10.1073/pnas.0900345106

    Article  PubMed  PubMed Central  Google Scholar 

  49. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC et al (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3(89):89ra57. https://doi.org/10.1126/scitranslmed.3002156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fleisher AS, Chen K, Liu X, Ayutyanont N, Roontiva A, Thiyyagura P, Protas H, Joshi AD et al (2013) Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging 34(1):1–12. https://doi.org/10.1016/j.neurobiolaging.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  51. Carrotta R, Bauer R, Waninge R, Rischel C (2001) Conformational characterization of oligomeric intermediates and aggregates in beta-lactoglobulin heat aggregation. Protein Sci 10(7):1312–1318. https://doi.org/10.1110/ps.42501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnson GVW, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117(Pt 24):5721–5729. https://doi.org/10.1242/jcs.01558

    Article  CAS  PubMed  Google Scholar 

  53. Tiwari MK, Kepp KP (2015) Modeling the aggregation propensity and toxicity of amyloid-β variants. J Alzheimers Dis 47(1):215–229. https://doi.org/10.3233/jad-150046

    Article  CAS  PubMed  Google Scholar 

  54. Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129(2):183–206. https://doi.org/10.1007/s00401-015-1386-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9:48. https://doi.org/10.1186/1750-1326-9-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang L, Trushin S, Christensen TA, Tripathi U, Hong C, Geroux RE, Howell KG, Poduslo JF et al (2018) Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol Dis 114:1–16. https://doi.org/10.1016/j.nbd.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Foroutanpay BV, Kumar J, Kang SG, Danaei N, Westaway D, Sim VL, Kar S (2018) The effects of N-terminal mutations on beta-amyloid peptide aggregation and toxicity. Neuroscience 379:177–188. https://doi.org/10.1016/j.neuroscience.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  58. Limegrover CS, LeVine H 3rd, Izzo NJ, Yurko R, Mozzoni K, Rehak C, Sadlek K, Safferstein H et al (2020) Alzheimer’s protection effect of A673T mutation may be driven by lower Abeta oligomer binding affinity. J Neurochem. https://doi.org/10.1111/jnc.15212

  59. Noguchi A, Nawa M, Aiso S, Okamoto K, Matsuoka M (2010) Transforming growth factor β2 level is elevated in neurons of Alzheimer’s disease brains. Int J Neurosci 120(3):168–175. https://doi.org/10.3109/00207450903139689

    Article  CAS  PubMed  Google Scholar 

  60. Yoshida H, Hastie CJ, McLauchlan H, Cohen P, Goedert M (2004) Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J Neurochem 90(2):352–358. https://doi.org/10.1111/j.1471-4159.2004.02479.x

    Article  CAS  PubMed  Google Scholar 

  61. Hashimoto Y, Matsuoka M (2014) A mutation protective against Alzheimer’s disease renders amyloid β precursor protein incapable of mediating neurotoxicity. J Neurochem 130(2):291–300. https://doi.org/10.1111/jnc.12717

    Article  CAS  PubMed  Google Scholar 

  62. Reynolds CH, Utton MA, Gibb GM, Yates A, Anderton BH (1997) Stress-activated protein kinase/c-jun N-terminal kinase phosphorylates tau protein. J Neurochem 68(4):1736–1744. https://doi.org/10.1046/j.1471-4159.1997.68041736.x

    Article  CAS  PubMed  Google Scholar 

  63. Yarza R, Vela S, Solas M, Ramirez MJ (2015) c-Jun N-terminal Kinase (JNK) Signaling as a therapeutic target for Alzheimer’s disease. Front Pharmacol 6:321. https://doi.org/10.3389/fphar.2015.00321

    Article  CAS  PubMed  Google Scholar 

  64. Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L et al (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A 102(19):6990–6995. https://doi.org/10.1073/pnas.0500466102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lambracht-Washington D, Rosenberg R (2013) Anti-amyloid-beta to tau-based immunization: developments in immunotherapy for Alzheimer&#39;s disease. Immunotargets Ther 2013(2):105–105. https://doi.org/10.2147/itt.s31428

    Article  PubMed  Google Scholar 

  66. Karran E, Hardy J (2014) A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol 76:185–205. https://doi.org/10.1002/ana.24188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koelsch G (2017) BACE1 Function and inhibition: implications of intervention in the amyloid pathway of Alzheimer’s disease pathology. Molecules 22. https://doi.org/10.3390/molecules22101723

  68. Tagami S, Yanagida K, Kodama TS, Takami M, Mizuta N, Oyama H, Nishitomi K, Yw C et al (2017) Semagacestat is a pseudo-inhibitor of γ-secretase. Cell Rep 21(1):259–273. https://doi.org/10.1016/j.celrep.2017.09.032

    Article  CAS  PubMed  Google Scholar 

  69. Schneider L (2020) A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol 19(2):111–112. https://doi.org/10.1016/S1474-4422(19)30480-6

    Article  PubMed  Google Scholar 

  70. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537(7618):50–56. https://doi.org/10.1038/nature19323

    Article  CAS  PubMed  Google Scholar 

  71. Cummings J, Feldman HH, Scheltens P (2019) The “rights” of precision drug development for Alzheimer's disease. Alzheimers Res Ther 11(1):76. https://doi.org/10.1186/s13195-019-0529-5

    Article  PubMed  PubMed Central  Google Scholar 

  72. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–333. https://doi.org/10.1056/NEJMoa1304839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abushouk AI, Elmaraezy A, Aglan A, Salama R, Fouda S, Fouda R, AlSafadi AM (2017) Bapineuzumab for mild to moderate Alzheimer’s disease: a meta-analysis of randomized controlled trials. BMC Neurol 17(1):66. https://doi.org/10.1186/s12883-017-0850-1

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gold M (2017) Phase II clinical trials of anti-amyloid β antibodies: when is enough, enough? Alzheimers Dement 3(3):402–409. https://doi.org/10.1016/j.trci.2017.04.005

    Article  Google Scholar 

  75. Parsons CG, Rammes G (2017) Preclinical to phase II amyloid beta (Aβ) peptide modulators under investigation for Alzheimer’s disease. Expert Opin Investig Drugs 26(5):579–592. https://doi.org/10.1080/13543784.2017.1313832

    Article  CAS  PubMed  Google Scholar 

  76. Netzer WJ, Bettayeb K, Sinha SC, Flajolet M, Greengard P, Bustos V (2017) Gleevec shifts APP processing from a β-cleavage to a nonamyloidogenic cleavage. Proc Natl Acad Sci U S A 114(6):1389–1394. https://doi.org/10.1073/pnas.1620963114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lederberg J (1963) Biological future of man. Novartis Foundation Symposia. In: Wolstenholme G (ed) Man and His Future. Churchill, London

    Google Scholar 

  78. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L et al (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270(5235):475–480. https://doi.org/10.1126/science.270.5235.475

    Article  CAS  PubMed  Google Scholar 

  79. Duan D (2018) Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther 26(10):2337–2356. https://doi.org/10.1016/j.ymthe.2018.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schimmer J, Breazzano S (2016) Investor outlook: rising from the ashes; GSK’s European Approval of Strimvelis for ADA-SCID. Hum Gene Ther Clin Dev 27:57–61. https://doi.org/10.1089/humc.2016.29010.ind

    Article  CAS  PubMed  Google Scholar 

  81. Darrow JJ (2019) Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today 24:949–954. https://doi.org/10.1016/j.drudis.2019.01.019

    Article  PubMed  Google Scholar 

  82. Yla-Herttuala S (2012) Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20(10):1831–1832. https://doi.org/10.1038/mt.2012.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Coller BS (2019) Ethics of human genome editing. Annu Rev Med 70(1):289–305. https://doi.org/10.1146/annurev-med-112717-094629

    Article  CAS  PubMed  Google Scholar 

  84. (1972) Gene therapy for human genetic disease? Science 178(4061):648–649

  85. Jenks S (2000) Gene therapy death--“everyone has to share in the guilt”. J Natl Cancer Inst 92(2):98–100. https://doi.org/10.1093/jnci/92.2.98

    Article  CAS  PubMed  Google Scholar 

  86. Gupta RK, Peppa D, Hill AL, Gálvez C, Salgado M, Pace M, McCoy LE, Griffith SA et al (2020) Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV 7(5):e340–e347. https://doi.org/10.1016/S2352-3018(20)30069-2

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, Martinez-Picado J, Nijhuis M et al (2019) HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 568(7751):244–248. https://doi.org/10.1038/s41586-019-1027-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Adams D, Suhr OB, Dyck PJ, Litchy WJ, Leahy RG, Chen J, Gollob J, Coelho T (2017) Trial design and rationale for APOLLO, a phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol 17(1):181. https://doi.org/10.1186/s12883-017-0948-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Milani P, Mussinelli R, Perlini S, Palladini G, Obici L (2019) An evaluation of patisiran: a viable treatment option for transthyretin-related hereditary amyloidosis. Expert Opin Pharmacother 20(18):2223–2228. https://doi.org/10.1080/14656566.2019.1671352

    Article  CAS  PubMed  Google Scholar 

  90. Gorevic P, Franklin J, Chen J, Sajeev G, Wang JCH, Lin H (2020) Indirect treatment comparison of the efficacy of patisiran and inotersen for hereditary transthyretin-mediated amyloidosis with polyneuropathy. Expert Opin Pharmacother:1–9. https://doi.org/10.1080/14656566.2020.1811850

  91. Vermunt L, Sikkes SAM, van den Hout A, Handels R, Bos I, van der Flier WM, Kern S, Ousset PJ et al (2019) Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement 15(7):888–898. https://doi.org/10.1016/j.jalz.2019.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hosseini SA, Mohammadi R, Noruzi S, Mohamadi Y, Azizian M, Mousavy SM, Ghasemi F, Hesari AR et al (2018) Stem cell- and gene-based therapies as potential candidates in Alzheimer’s therapy. J Cell Biochem 119(11):8723–8736. https://doi.org/10.1002/jcb.27202

    Article  CAS  PubMed  Google Scholar 

  93. Loera-Valencia R, Piras A, Ismail MAM, Manchanda S, Eyjolfsdottir H, Saido TC, Johansson J, Eriksdotter M et al (2018) Targeting Alzheimer’s disease with gene and cell therapies. J Intern Med 284:2–36. https://doi.org/10.1111/joim.12759

    Article  CAS  PubMed  Google Scholar 

  94. Lehtonen Š, Höytyläinen I, Voutilainen J, Sonninen T, Kuusisto J, Laakso M, Hämäläinen R, Oksanen M et al (2018) Generation of a human induced pluripotent stem cell line from a patient with a rare A673T variant in amyloid precursor protein gene that reduces the risk for Alzheimer’s disease. Stem Cell Res 30:96–99. https://doi.org/10.1016/j.scr.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  95. Jia Y, Cao N, Zhai J, Zeng Q, Zheng P, Su R, Liao T, Liu J et al (2020) HGF mediates clinical-grade human umbilical cord-derived mesenchymal stem cells improved functional recovery in a senescence-accelerated mouse model of Alzheimer’s disease. Adv Sci 7(17):1903809. https://doi.org/10.1002/advs.201903809

    Article  CAS  Google Scholar 

  96. Xiong M, Tao Y, Gao Q, Feng B, Yan W, Zhou Y, Kotsonis TA, Yuan T et al (2020) Human stem cell-derived neurons repair circuits and restore neural function. Cell Stem Cell 28:112–126.e6. https://doi.org/10.1016/j.stem.2020.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rolova T, Wu YC, Koskuvi M, Voutilainen J, Sonninen TM, Kuusisto J, Laakso M, Hamalainen RH et al (2020) Generation of a human induced pluripotent stem cell line (UEFi003-A) carrying heterozygous A673T variant in amyloid precursor protein associated with a reduced risk of Alzheimer’s disease. Stem Cell Res 48:101968. https://doi.org/10.1016/j.scr.2020.101968

    Article  CAS  PubMed  Google Scholar 

  98. Rousseau J, Mbakam CH, Guyon A, Tremblay G, Begin FG, Tremblay JP (2020) Specific mutations in genes responsible for Alzheimer and for Duchenne muscular dystrophy introduced by Base editing and PRIME editing. bioRxiv:2020.2007.2031.230565. https://doi.org/10.1101/2020.07.31.230565

  99. Guyon A, Rousseau J, Bégin F-G, Bertin T, Lamothe G, Tremblay JP (2021) Base editing strategy for insertion of the A673T mutation in APP gene to prevent the development of Alzheimer’s disease in vitro. Mol Ther Nucleic Acid 24:253–263. https://doi.org/10.1016/j.omtn.2021.02.032

    Article  CAS  Google Scholar 

  100. Tremblay JP, Guyon A, Joël RP (2020) Optimization of in vitro gene delivery to neurons containing an APP gene with a mutation responsible for familial Alzheimer’s disease for the development of a base editing therapy. Alzheimers Dement 16(S9):e038980. https://doi.org/10.1002/alz.038980

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our supporters: National Natural Science Foundation of China (81701078, 81773165), Natural Science Foundation of Heilongjiang Province of China (QC2017090), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2016190), China Postdoctoral Science Foundation (2016M600261, 2018T110317), The Innovative Science Research Project of Harbin Medical University (2016JCZX37), Heilongjiang Postdoctoral Financial Assistance (LBH-Z15163), and Heilongjiang Touyan Innovation Team Program.

Funding

This work was supported in part by grants from the National Natural Science Foundation of China (81701078, 81773165), Natural Science Foundation of Heilongjiang Province of China (QC2017090), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2016190), China Postdoctoral Science Foundation (2016M600261, 2018T110317), The Innovative Science Research Project of Harbin Medical University (2016JCZX37), Heilongjiang Postdoctoral Financial Assistance (LBH-Z15163), and Heilongjiang Touyan Innovation Team Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the article. Xu Gao and DaYong Wang had the idea for the article. The first draft of the manuscript was written by Qing Xia, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to DaYong Wang or Xu Gao.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Q., Yang, X., Shi, J. et al. The Protective A673T Mutation of Amyloid Precursor Protein (APP) in Alzheimer’s Disease. Mol Neurobiol 58, 4038–4050 (2021). https://doi.org/10.1007/s12035-021-02385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02385-y

Keywords

Navigation