Skip to main content

Advertisement

Log in

Nociception in a Progressive Multiple Sclerosis Model in Mice Is Dependent on Spinal TRPA1 Channel Activation

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Central neuropathic pain is a common untreated symptom in progressive multiple sclerosis (PMS) and is associated with poor quality of life and interference with patients’ daily activities. The neuroinflammation process and mitochondrial dysfunction in the PMS lesions generate reactive species. The transient potential receptor ankyrin 1 (TRPA1) has been identified as one of the major mechanisms that contribute to neuropathic pain signaling and can be activated by reactive compounds. Thus, the goal of our study was to evaluate the role of spinal TRPA1 in the central neuropathic pain observed in a PMS model in mice. We used C57BL/6 female mice (20–30 g), and the PMS model was induced by the experimental autoimmune encephalomyelitis (EAE) using mouse myelin oligodendrocyte glycoprotein (MOG35–55) antigen and CFA (complete Freund’s adjuvant). Mice developed progressive clinical score, with motor impairment observed after 15 days of induction. This model induced mechanical and cold allodynia and heat hyperalgesia which were measured up to 14 days after induction. The hypersensitivity observed was reduced by the administration of selective TRPA1 antagonists (HC-030031 and A-967079, via intrathecal and intragastric), antioxidants (α-lipoic acid and apocynin, via intrathecal and intragastric), and TRPA1 antisense oligonucleotide (via intrathecal). We also observed an increase in TRPA1 mRNA levels, NADPH oxidase activity, and 4-hydroxinonenal (a TRPA1 agonist) levels in spinal cord samples of PMS-EAE induced animals. In conclusion, these results support the hypothesis of the TRPA1 receptor involvement in nociception observed in a PMS-EAE model in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391:1622–1636. https://doi.org/10.1016/S0140-6736(18)30481-1

    Article  PubMed  Google Scholar 

  2. Ontaneda D, Thompson AJ, Fox RJ, Cohen JA (2017) Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet 389:1357–1366. https://doi.org/10.1016/S0140-6736(16)31320-4

    Article  PubMed  Google Scholar 

  3. Harbo HF, Gold R, Tintora M (2013) Sex and gender issues in multiple sclerosis. Ther Adv Neurol Disord 6:237–248. https://doi.org/10.1177/1756285613488434

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benson C, Kerr BJ (2014) Pain and cognition in multiple sclerosis. Curr Top Behav Neurosci 20:201–215. https://doi.org/10.1007/7854_2014_309

    Article  PubMed  Google Scholar 

  5. Yousuf MS, Noh M, Friedman TN et al (2019) Sensory neurons of the dorsal root ganglia become hyperexcitable in a T-cell-mediated MOG-EAE model of multiple sclerosis. ENEURO 6:ENEURO.0024-19.2019. https://doi.org/10.1523/ENEURO.0024-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  6. Drulovic J, Basic-Kes V, Grgic S, Vojinovic S, Dincic E, Toncev G, Kezic MG, Kisic-Tepavcevic D et al (2015) The prevalence of pain in adults with multiple sclerosis: a multicenter cross-sectional survey. Pain Med 16:1597–1602. https://doi.org/10.1111/pme.12731

  7. Brichetto G, Uccelli MM, Mancardi GL, Solaro C (2003) Symptomatic medication use in multiple sclerosis. Mult Scler J 9:458–460. https://doi.org/10.1191/1352458503ms957oa

    Article  CAS  Google Scholar 

  8. Solaro C, Messmer Uccelli M (2010) Pharmacological management of pain in patients with multiple sclerosis. Drugs 70:1–1254. https://doi.org/10.2165/11537930-000000000-00000

    Article  Google Scholar 

  9. Duffy SS, Lees JG, Moalem-Taylor G (2014) The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult Scler Int 2014:285245. https://doi.org/10.1155/2014/285245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7:904–912. https://doi.org/10.1038/nri2190

    Article  CAS  PubMed  Google Scholar 

  11. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aicher SA, Silverman MB, Winkler CW, Bebo BF (2004) Hyperalgesia in an animal model of multiple sclerosis. Pain 110:560–570. https://doi.org/10.1016/j.pain.2004.03.025

    Article  CAS  PubMed  Google Scholar 

  13. Olechowski CJ, Truong JJ, Kerr BJ (2009) Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain 141:156–164. https://doi.org/10.1016/j.pain.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  14. Duffy SS, Keating BA, Perera CJ, Lees JG, Tonkin RS, Makker PGS, Carrive P, Butovsky O et al (2019) Regulatory T cells and their derived cytokine, interleukin-35, reduce pain in experimental autoimmune encephalomyelitis. J Neurosci 39:2326–2346. https://doi.org/10.1523/JNEUROSCI.1815-18.2019

  15. Fu W, Taylor BK (2015) Activation of cannabinoid CB2 receptors reduces hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Neurosci Lett 595:1–6. https://doi.org/10.1016/j.neulet.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bernardes D, Oliveira ALR (2017) Comprehensive catwalk gait analysis in a chronic model of multiple sclerosis subjected to treadmill exercise training. BMC Neurol 17:160. https://doi.org/10.1186/s12883-017-0941-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Österberg A, Boivie J, Thuomas K-Å (2005) Central pain in multiple sclerosis - prevalence and clinical characteristics. Eur J Pain 9:531–542. https://doi.org/10.1016/j.ejpain.2004.11.005

    Article  PubMed  Google Scholar 

  18. Osterberg A, Boivie J (2010) Central pain in multiple sclerosis - sensory abnormalities. Eur J Pain 14:104–110. https://doi.org/10.1016/j.ejpain.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  19. Su K, Bourdette D, Forte M (2013) Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front Physiol 4:169

    Article  PubMed  PubMed Central  Google Scholar 

  20. Khan N, Gordon R, Woodruff TM, Smith MT (2015) Antiallodynic effects of alpha lipoic acid in an optimized RR-EAE mouse model of MS-neuropathic pain are accompanied by attenuation of upregulated BDNF-TrkB-ERK signaling in the dorsal horn of the spinal cord. Pharmacol Res Perspect:3, e00137. https://doi.org/10.1002/prp2.137

  21. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829. https://doi.org/10.1016/S0092-8674(03)00158-2

  22. Sahoo SS, Majhi RK, Tiwari A et al (2019) Transient receptor potential ankyrin1 channel is endogenously expressed in T cells and is involved in immune functions. Biosci Rep 39:BSR20191437. https://doi.org/10.1042/BSR20191437

    Article  PubMed  PubMed Central  Google Scholar 

  23. Benemei S, De Cesaris F, Fusi C et al (2013) TRPA1 and other TRP channels in migraine. J Headache Pain 14:71. https://doi.org/10.1186/1129-2377-14-71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sawada Y, Hosokawa H, Matsumura K, Kobayashi S (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27:1131–1142. https://doi.org/10.1111/j.1460-9568.2008.06093.x

    Article  PubMed  Google Scholar 

  25. Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andrè E et al (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104:13519–13524. https://doi.org/10.1073/pnas.0705923104

  26. Pinheiro FDV, Villarinho JG, Silva CR et al (2015) The involvement of the TRPA1 receptor in a mouse model of sympathetically maintained neuropathic pain. Eur J Pharmacol 747:105–113. https://doi.org/10.1016/j.ejphar.2014.11.039

    Article  CAS  PubMed  Google Scholar 

  27. Trevisan G, Benemei S, Materazzi S, de Logu F, de Siena G, Fusi C, Fortes Rossato M, Coppi E et al (2016) TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain 139:1361–1377. https://doi.org/10.1093/brain/aww038

  28. De Logu F, Nassini R, Materazzi S et al (2017) Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun 8:1887. https://doi.org/10.1038/s41467-017-01739-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K, Fischer MJ, Fleming T, Zimmermann K et al (2012) Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 287:28291–28306. https://doi.org/10.1074/jbc.M111.328674

  30. Andersson DA, Gentry C, Light E et al (2013) Methylglyoxal evokes pain by stimulating TRPA1. PLoS One 8:e77986. https://doi.org/10.1371/journal.pone.0077986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nassini R, Gees M, Harrison S, de Siena G, Materazzi S, Moretto N, Failli P, Preti D et al (2011) Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152:1621–1631. https://doi.org/10.1016/j.pain.2011.02.051

  32. Meents JE, Ciotu CI, Fischer MJM (2019) Trpa1: A molecular view. J Neurophysiol 121:427–443

    Article  CAS  PubMed  Google Scholar 

  33. Bölcskei K, Kriszta G, Sághy É, Payrits M, Sipos É, Vranesics A, Berente Z, Ábrahám H et al (2018) Behavioural alterations and morphological changes are attenuated by the lack of TRPA1 receptors in the cuprizone-induced demyelination model in mice. J Neuroimmunol 320:1–10. https://doi.org/10.1016/J.JNEUROIM.2018.03.020

  34. Sághy É, Sipos É, Ács P et al (2016) TRPA1 deficiency is protective in cuprizone-induced demyelination-a new target against oligodendrocyte apoptosis. Glia 64:2166–2180. https://doi.org/10.1002/glia.23051

    Article  PubMed  Google Scholar 

  35. McGrath JC, Lilley E (2015) Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 172:3189–3193. https://doi.org/10.1111/bph.12955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110. https://doi.org/10.1016/0304-3959(83)90201-4

    Article  CAS  PubMed  Google Scholar 

  37. Souza PS, Gonçalves ED, Pedroso GS, Farias HR, Junqueira SC, Marcon R, Tuon T, Cola M et al (2017) Physical exercise attenuates experimental autoimmune encephalomyelitis by inhibiting peripheral immune response and blood-brain barrier disruption. Mol Neurobiol 54:4723–4737. https://doi.org/10.1007/s12035-016-0014-0

  38. Dutra RC, Bento AF, Leite DFP, Manjavachi MN, Marcon R, Bicca MA, Pesquero JB, Calixto JB (2013) The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: evidence for the involvement of astrocytes. Neurobiol Dis 54:82–93. https://doi.org/10.1016/j.nbd.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  39. Stromnes IM, Goverman JM (2006) Active induction of experimental allergic encephalomyelitis. Nat Protoc 14(1):1810. https://doi.org/10.1038/nprot.2006.285

    Article  CAS  Google Scholar 

  40. Meyer OA, Tilson HA, Byrd WC, Riley MT (1979) A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol 1:233–236

    CAS  PubMed  Google Scholar 

  41. Ahmed RU, Alam M, Zheng YP (2019) Experimental spinal cord injury and behavioral tests in laboratory rats. Heliyon 5

  42. Olechowski CJ, Tenorio G, Sauve Y, Kerr BJ (2013) Changes in nociceptive sensitivity and object recognition in experimental autoimmune encephalomyelitis (EAE). Exp Neurol 241:113–121. https://doi.org/10.1016/J.EXPNEUROL.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  43. Vadakkan KI, Jia YH, Zhuo M (2005) A behavioral model of neuropathic pain induced by ligation of the common peroneal nerve in mice. J Pain 6:747–756. https://doi.org/10.1016/j.jpain.2005.07.005

    Article  PubMed  Google Scholar 

  44. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63. https://doi.org/10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  45. de Almeida AS, Rigo FK, De Prá SD-T et al (2019) Characterization of cancer-induced nociception in a murine model of breast carcinoma. Cell Mol Neurobiol 39:605–617. https://doi.org/10.1007/s10571-019-00666-8

    Article  CAS  PubMed  Google Scholar 

  46. Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462. https://doi.org/10.1146/annurev.pa.20.040180.002301

    Article  CAS  PubMed  Google Scholar 

  47. Trevisan G, Materazzi S, Fusi C, Altomare A, Aldini G, Lodovici M, Patacchini R, Geppetti P et al (2013) Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res 73:3120–3131. https://doi.org/10.1158/0008-5472.CAN-12-4370

  48. Veiga-Júnior VF, Rosas EC, Carvalho MV et al (2007) Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne-a comparative study. J Ethnopharmacol 112:248–254. https://doi.org/10.1016/j.jep.2007.03.005

    Article  CAS  PubMed  Google Scholar 

  49. Hewitt E, Pitcher T, Rizoska B, Tunblad K, Henderson I, Sahlberg BL, Grabowska U, Classon B et al (2016) Selective cathepsin S inhibition with MIV-247 attenuates mechanical allodynia and enhances the antiallodynic effects of gabapentin and pregabalin in a mouse model of neuropathic pain. J Pharmacol Exp Ther 358:387–396. https://doi.org/10.1124/jpet.116.232926

  50. Antoniazzi CTDD, Nassini R, Rigo FK et al (2018) Transient receptor potential ankyrin 1 (TRPA1) plays a critical role in a mouse model of cancer pain. Int J Cancer. https://doi.org/10.1002/ijc.31911

  51. Nassini R, Fusi C, Materazzi S, Coppi E, Tuccinardi T, Marone IM, de Logu F, Preti D et al (2015) The TRPA1 channel mediates the analgesic action of dipyrone and pyrazolone derivatives. Br J Pharmacol 172:3397–3411. https://doi.org/10.1111/bph.13129

  52. Andrade EL, Luiz AP, Ferreira J, Calixto JB (2008) Pronociceptive response elicited by TRPA1 receptor activation in mice. Neuroscience 152:511–520. https://doi.org/10.1016/J.NEUROSCIENCE.2007.12.039

    Article  CAS  PubMed  Google Scholar 

  53. da Costa DSM, Meotti FC, Andrade EL, Leal PC, Motta EM, Calixto JB (2010) The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 148:431–437. https://doi.org/10.1016/j.pain.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  54. Hylden JLK, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67:313–316. https://doi.org/10.1016/0014-2999(80)90515-4

    Article  CAS  PubMed  Google Scholar 

  55. Trevisan G, Rossato MF, Walker CIB, Oliveira SM, Rosa F, Tonello R, Silva CR, Machado P et al (2013) A novel, potent, oral active and safe antinociceptive pyrazole targeting kappa opioid receptors. Neuropharmacology 73:261–273. https://doi.org/10.1016/j.neuropharm.2013.06.011

  56. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  57. Bannerman PG, Hahn A, Ramirez S, Morley M, Bönnemann C, Yu S, Zhang GX, Rostami A et al (2005) Motor neuron pathology in experimental autoimmune encephalomyelitis: Studies in THY1-YFP transgenic mice. Brain 128:1877–1886. https://doi.org/10.1093/brain/awh550

  58. Schmitz K, Pickert G, Wijnvoord N et al (2013) Dichotomy of CCL21 and CXCR3 in nerve injury-evoked and autoimmunity-evoked hyperalgesia. Brain Behav Immun 32:186–200. https://doi.org/10.1016/j.bbi.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  59. Solaro C, Brichetto G, Battaglia MA, Messmer Uccelli M, Mancardi GL (2005) Antiepileptic medications in multiple sclerosis: adverse effects in a three-year follow-up study. Neurol Sci 25:307–310. https://doi.org/10.1007/s10072-004-0362-9

    Article  CAS  PubMed  Google Scholar 

  60. Wang I-C, Chung C-Y, Liao F, Chen CC, Lee CH (2017) Peripheral sensory neuron injury contributes to neuropathic pain in experimental autoimmune encephalomyelitis. Sci Rep 7:1–14. https://doi.org/10.1038/srep42304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taylor CP (2009) Mechanisms of analgesia by gabapentin and pregabalin - calcium channel α2-δ [Cavα2-δ] ligands. Pain 142:13–16

    Article  CAS  PubMed  Google Scholar 

  62. Klafke JZ, da Silva MA, Trevisan G, Rossato MF, da Silva CR, Guerra GP, Villarinho JG, Rigo FK et al (2012) Involvement of the glutamatergic system in the nociception induced intrathecally for a TRPA1 agonist in rats. Neuroscience 222:136–146. https://doi.org/10.1016/j.neuroscience.2012.07.022

  63. Mihai DP, Nitulescu GM, Ion GND et al (2019) Computational drug repurposing algorithm targeting TRPA1 calcium channel as a potential therapeutic solution for multiple sclerosis. Pharmaceutics 11:E446. https://doi.org/10.3390/pharmaceutics11090446

    Article  CAS  PubMed  Google Scholar 

  64. Dworkin RH, O’Connor AB, Audette J et al (2010) Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc 85:S3–S14. https://doi.org/10.4065/mcp.2009.0649

  65. Khan N, Smith MT (2014) Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology 22:1–22. https://doi.org/10.1007/s10787-013-0195-3

    Article  CAS  PubMed  Google Scholar 

  66. Tzellos TG, Papazisis G, Amaniti E, Kouvelas D (2008) Efficacy of pregabalin and gabapentin for neuropathic pain in spinal-cord injury: an evidence-based evaluation of the literature. Eur J Clin Pharmacol 64:851–858

    Article  CAS  PubMed  Google Scholar 

  67. Schmidt PC, Ruchelli G, Mackey SC, Carroll IR (2013) Perioperative gabapentinoids choice of agent, dose, timing, and effects on chronic postsurgical pain. Anesthesiology 119:1215–1221

    Article  PubMed  Google Scholar 

  68. Moran MM, Szallasi A (2018) Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol 175:2185–2203

    Article  CAS  PubMed  Google Scholar 

  69. Griggs RB, Santos DF, Laird DE, Doolen S, Donahue RR, Wessel CR, Fu W, Sinha GP et al (2019) Methylglyoxal and a spinal TRPA1-AC1-Epac cascade facilitate pain in the db/db mouse model of type 2 diabetes. Neurobiol Dis 127:76–86. https://doi.org/10.1016/j.nbd.2019.02.019

  70. Düll MM, Riegel K, Tappenbeck J et al (2019) Methylglyoxal causes pain and hyperalgesia in human through C-fiber activation. Pain 1. https://doi.org/10.1097/j.pain.0000000000001644

  71. Weyer-Menkhoff I, Lötsch J (2019) TRPA1 sensitization produces hyperalgesia to heat but not to cold stimuli in human volunteers. Clin J Pain 35:321–327. https://doi.org/10.1097/AJP.0000000000000677

    Article  PubMed  Google Scholar 

  72. de David Antoniazzi CT, De Prá SD-T, Ferro PR et al (2018) Topical treatment with a transient receptor potential ankyrin 1 (TRPA1) antagonist reduced nociception and inflammation in a thermal lesion model in rats. Eur J Pharm Sci 125:28–38. https://doi.org/10.1016/j.ejps.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  73. Vriens J, Voets T (2019) Heat sensing involves a TRiPlet of ion channels. Br J Pharmacol 176:3893–3898. https://doi.org/10.1111/bph.14812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437

    Article  CAS  PubMed  Google Scholar 

  75. Hinz B, Cheremina O, Bachmakov J, Renner B, Zolk O, Fromm MF, Brune K (2007) Dipyrone elicits substantial inhibition of peripheral cyclooxygenases in humans: new insights into the pharmacology of an old analgesic. FASEB J 21:2343–2351. https://doi.org/10.1096/fj.06-8061com

    Article  CAS  PubMed  Google Scholar 

  76. Malvar DDC, Soares DM, Fabrício ASC et al (2011) The antipyretic effect of dipyrone is unrelated to inhibition of PGE 2 synthesis in the hypothalamus. Br J Pharmacol 162:1401–1409. https://doi.org/10.1111/j.1476-5381.2010.01150.x

    Article  CAS  Google Scholar 

  77. Tonello R, Fusi C, Materazzi S et al (2016) Phalpha1beta acts as a TRPA1 antagonist with antinociceptive effects in mice. Br J Pharmacol:57–69. https://doi.org/10.1111/bph.13652

  78. Brusco I, Li Puma S, Chiepe KB et al (2019) Dacarbazine alone or associated with melanoma-bearing cancer pain model induces painful hypersensitivity by TRPA1 activation in mice. Int J Cancer. https://doi.org/10.1002/ijc.32648

  79. De Logu F, Li Puma S, Landini L et al (2019) Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice. J Clin Invest. https://doi.org/10.1172/JCI128022

  80. Newcombe J, Li H, Cuzner ML (1994) Low density lipoprotein uptake by macrophages in multiple sclerosis plaques: implications for pathogenesis. Neuropathol Appl Neurobiol 20:152–162. https://doi.org/10.1111/j.1365-2990.1994.tb01174.x

    Article  CAS  PubMed  Google Scholar 

  81. Ma MW, Wang J, Zhang Q et al (2017) NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 12:1–28. https://doi.org/10.1186/s13024-017-0150-7

    Article  CAS  Google Scholar 

  82. Kamisli S, Ciftci O, Taslidere A, Basak Turkmen N, Ozcan C (2018) The beneficial effects of 18β-glycyrrhetinic acid on the experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mouse model. Immunopharmacol Immunotoxicol 40:344–352. https://doi.org/10.1080/08923973.2018.1490318

    Article  CAS  PubMed  Google Scholar 

  83. Benson C, Paylor JW, Tenorio G, Winship I, Baker G, Kerr BJ (2015) Voluntary wheel running delays disease onset and reduces pain hypersensitivity in early experimental autoimmune encephalomyelitis (EAE). Exp Neurol 271:279–290. https://doi.org/10.1016/j.expneurol.2015.05.017

    Article  CAS  PubMed  Google Scholar 

  84. Chaudhary P, Marracci G, Yu X, Galipeau D, Morris B, Bourdette D (2011) Lipoic acid decreases inflammation and confers neuroprotection in experimental autoimmune optic neuritis. J Neuroimmunol 233:90–96. https://doi.org/10.1016/j.jneuroim.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chaudhary P, Marracci G, Galipeau D, Pocius E, Morris B, Bourdette D (2015) Lipoic acid reduces inflammation in a mouse focal cortical experimental autoimmune encephalomyelitis model. J Neuroimmunol 289:68–74. https://doi.org/10.1016/j.jneuroim.2015.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li B, Tan G-J, Lin H-Q et al (2018) Neuroprotective effects of α-lipoic acid on long-term experimental autoimmune encephalomyelitis. Eur Rev Med Pharmacol Sci 22:6517–6528. https://doi.org/10.26355/eurrev_201810_16066

    Article  CAS  PubMed  Google Scholar 

  87. Agathos E, Tentolouris A, Eleftheriadou I, Katsaouni P, Nemtzas I, Petrou A, Papanikolaou C, Tentolouris N (2018) Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J Int Med Res 46:1779–1790. https://doi.org/10.1177/0300060518756540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Olukman M, Önal A, Çelenk F et al (2018) Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats. Neural Regen Res 13:1657–1664. https://doi.org/10.4103/1673-5374.232530

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hassler SN, Ahmad FB, Burgos-Vega CC, Boitano S, Vagner J, Price TJ, Dussor G (2019) Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia 39:111–122. https://doi.org/10.1177/0333102418779548

    Article  PubMed  Google Scholar 

  90. Trevisan G, Hoffmeister C, Rossato MF, Oliveira SM, Silva MA, Ineu RP, Guerra GP, Materazzi S et al (2013) Transient receptor potential ankyrin 1 receptor stimulation by hydrogen peroxide is critical to trigger pain during monosodium urate-induced inflammation in rodents. Arthritis Rheum 65:2984–2995. https://doi.org/10.1002/art.38112

  91. Waslo C, Bourdette D, Gray N, Wright K, Spain R (2019) Lipoic acid and other antioxidants as therapies for multiple sclerosis. Curr Treat Options Neurol 21:26–21. https://doi.org/10.1007/s11940-019-0566-1

    Article  PubMed  Google Scholar 

  92. Loy BD, Fling BW, Horak FB, Bourdette DN, Spain RI (2018) Effects of lipoic acid on walking performance, gait, and balance in secondary progressive multiple sclerosis. Complement Ther Med 41:169–174. https://doi.org/10.1016/j.ctim.2018.09.006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Fellowships from the Conselho Nacional de Desenvolvimento Científico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) are received. Fellowship from the Camila Ritter from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (process #88882.427871/2019-01). Gabriela Trevisan is recipient of a fellowship from CNPq (process #306576/2017-1; https://doi.org/10.13039/501100003593), L’ORÉAL—ABC—UNESCO Para Mulheres na Ciência, 2016 and Prêmio Capes de Teses—Ciências Biológicas II, CAPES, 2014 (process #23038.006930/2014/59; https://doi.org/10.13039/501100002322).

Author information

Authors and Affiliations

Authors

Contributions

All the authors discussed the results, commented on the manuscript, and approved this final version.

1) Substantial contributions to conception and design, data acquisition, analysis, and interpretation: Camila Ritter, Diéssica Padilha Dalenogare, Amanda Spring de Almeida, Vitória Loreto Pereira, Gabriele Cheiran Pereira, Maria Fernanda Pessano Fialho, Débora Denardin Lückemeyer, Caren Tatiane Antoniazzi, Sabrina Qader Kudsi, Juliano Ferreira, Sara Marchesan Oliveira, and Gabriela Trevisan.

2) Drafting and critically revising the article important intellectual content: Camila Ritter, Diéssica Padilha Dalenogare, Amanda Spring de Almeida, Vitória Loreto Pereira, Gabriele Cheiran Pereira, Maria Fernanda Pessano Fialho, Débora Denardin Lückemeyer, Caren Tatiane Antoniazzi, Sabrina Qader Kudsi, Juliano Ferreira, Sara Marchesan Oliveira, and Gabriela Trevisan.

3) Final article approval: Camila Ritter, Diéssica Padilha Dalenogare, Amanda Spring de Almeida, Vitória Loreto Pereira, Gabriele Cheiran Pereira, Maria Fernanda Pessano Fialho, Débora Denardin Lückemeyer, Caren Tatiane Antoniazzi, Sabrina Qader Kudsi, Juliano Ferreira, Sara Marchesan Oliveira, and Gabriela Trevisan.

4) Acquisition of funding and general supervision of the research group: Juliano Ferreira, Sara Marchesan Oliveira, and Gabriela Trevisan.

Corresponding author

Correspondence to Gabriela Trevisan.

Ethics declarations

The experimental procedures were approved by the Ethics Committee on Animal Use of UFSM and were carried out in accordance with Brazilian Animal Welfare Standards (protocol #7218010817/2017). The experimental protocols followed the guidelines of Animal Research Reporting In Vivo Experiments (ARRIVE) [35]. Also, experiments were performed using the current ethical guidelines for the investigation of experimental pain in conscious animals, and the minimum necessary number of animals and the intensity of noxious stimuli were used to demonstrate the consistent effects of the treatments [36].

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritter, C., Dalenogare, D.P., de Almeida, A.S. et al. Nociception in a Progressive Multiple Sclerosis Model in Mice Is Dependent on Spinal TRPA1 Channel Activation. Mol Neurobiol 57, 2420–2435 (2020). https://doi.org/10.1007/s12035-020-01891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01891-9

Keywords

Navigation