Skip to main content
Log in

Central Neuropathic Pain Syndromes: Current and Emerging Pharmacological Strategies

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Central neuropathic pain is caused by a disease or lesion of the brain or spinal cord. It is difficult to predict which patients will develop central pain syndromes after a central nervous system injury, but depending on the etiology, lifetime prevalence may be greater than 50%. The resulting pain is often highly distressing and difficult to treat, with no specific treatment guidelines currently available. This narrative review discusses mechanisms contributing to central neuropathic pain, and focuses on pharmacological approaches for managing common central neuropathic pain conditions such as central post-stroke pain, spinal cord injury-related pain, and multiple sclerosis-related neuropathic pain. Tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors, and gabapentinoids have some evidence for efficacy in central neuropathic pain. Medications from other pharmacologic classes may also provide pain relief, but current evidence is limited. Certain non-pharmacologic approaches, neuromodulation in particular, may be helpful in refractory cases. Emerging data suggest that modulating the primary afferent input may open new horizons for the treatment of central neuropathic pain. For most patients, effective treatment will likely require a multimodal therapy approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, et al. Neuropathic pain. Nat Rev Dis Primers. 2017;3:17002. https://doi.org/10.1038/nrdp.2017.2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Treede R-D, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the international classification of diseases (ICD-11). Pain. 2019;160:19–27. https://doi.org/10.1097/j.pain.0000000000001384.

    Article  PubMed  Google Scholar 

  3. Scholz J, Finnerup NB, Attal N, Aziz Q, Baron R, Bennett MI, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain. 2019;160:53–9. https://doi.org/10.1097/j.pain.0000000000001365.

    Article  PubMed  PubMed Central  Google Scholar 

  4. O’Brien T, Breivik H. The impact of chronic pain-European patients’ perspective over 12 months. Scand J Pain. 2012;3:23–9. https://doi.org/10.1016/j.sjpain.2011.11.004.

    Article  PubMed  Google Scholar 

  5. O’Connor AB. Neuropathic pain: quality-of-life impact, costs and cost effectiveness of therapy. Pharmacoeconomics. 2009;27:95–112. https://doi.org/10.2165/00019053-200927020-00002.

    Article  PubMed  Google Scholar 

  6. Gierthmühlen J, Baron R. Neuropathic pain. Semin Neurol. 2016;36:462–8. https://doi.org/10.1055/s-0036-1584950.

    Article  PubMed  Google Scholar 

  7. Jay GW, Barkin RL. Neuropathic pain: etiology, pathophysiology, mechanisms, and evaluations. Dis Mon. 2014;60:6–47. https://doi.org/10.1016/j.disamonth.2013.12.001.

    Article  PubMed  Google Scholar 

  8. Watson JC, Sandroni P. Central neuropathic pain syndromes. Mayo Clin Proc. 2016;91:372–85. https://doi.org/10.1016/j.mayocp.2016.01.017.

    Article  PubMed  Google Scholar 

  9. Meacham K, Shepherd A, Mohapatra DP, Haroutounian S. Neuropathic pain: central vs. peripheral mechanisms. Curr Pain Headache Rep. 2017;21:28. https://doi.org/10.1007/s11916-017-0629-5.

    Article  PubMed  Google Scholar 

  10. Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev. 2021;101:259–301. https://doi.org/10.1152/physrev.00045.2019.

    Article  PubMed  Google Scholar 

  11. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumers N, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375:482–4. https://doi.org/10.1038/375482a0.

    Article  CAS  PubMed  Google Scholar 

  12. Jutzeler CR, Curt A, Kramer JLK. Relationship between chronic pain and brain reorganization after deafferentation: a systematic review of functional MRI findings. Neuroimage Clin. 2015;9:599–606. https://doi.org/10.1016/j.nicl.2015.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Makin TR, Flor H. Brain (re)organisation following amputation: implications for phantom limb pain. Neuroimage. 2020;218: 116943. https://doi.org/10.1016/j.neuroimage.2020.116943.

    Article  PubMed  Google Scholar 

  14. Bedi SS, Lago MT, Masha LI, Crook RJ, Grill RJ, Walters ET. Spinal cord injury triggers an intrinsic growth-promoting state in nociceptors. J Neurotrauma. 2012;29:925–35. https://doi.org/10.1089/neu.2011.2007.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang Q, Wu Z, Hadden JK, Odem MA, Zuo Y, Crook RJ, et al. Persistent pain after spinal cord injury is maintained by primary afferent activity. J Neurosci. 2014;34:10765–9. https://doi.org/10.1523/JNEUROSCI.5316-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Viswanath O, Urits I, Burns J, Charipova K, Gress K, McNally A, et al. Central neuropathic mechanisms in pain signaling pathways: current evidence and recommendations. Adv Ther. 2020;37:1946–59. https://doi.org/10.1007/s12325-020-01334-w.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central meuropathic pain after spinal cord injury. Curr Pain Headache Rep. 2011;15:215–22. https://doi.org/10.1007/s11916-011-0186-2.

    Article  PubMed  Google Scholar 

  18. Waxman SG, Hains BC. Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci. 2006;29:207–15. https://doi.org/10.1016/j.tins.2006.02.003.

    Article  CAS  PubMed  Google Scholar 

  19. Max MB, Hagen NA. Do changes in brain sodium channels cause central pain? Neurology. 2000;54:544–5. https://doi.org/10.1212/WNL.54.3.544.

    Article  CAS  PubMed  Google Scholar 

  20. Black JA, Newcombe J, Waxman SG. Astrocytes within multiple sclerosis lesions upregulate sodium channel Nav1.5. Brain. 2010;133:835–46. https://doi.org/10.1093/brain/awq003.

    Article  PubMed  Google Scholar 

  21. Attal N, Gaudé V, Brasseur L, Dupuy M, Guirimand F, Parker F, et al. Intravenous lidocaine in central pain: a double-blind, placebo-controlled, psychophysical study. Neurology. 2000;54:564–74. https://doi.org/10.1212/wnl.54.3.564.

    Article  CAS  PubMed  Google Scholar 

  22. Muth-Selbach U, Hermanns H, Stegmann JU, Kollosche K, Freynhagen R, Bauer I, et al. Antinociceptive effects of systemic lidocaine: involvement of the spinal glycinergic system. Eur J Pharmacol. 2009;613:68–73. https://doi.org/10.1016/j.ejphar.2009.04.043.

    Article  CAS  PubMed  Google Scholar 

  23. Biella G, Sotgiu ML. Central effects of systemic lidocaine mediated by glycine spinal receptors: an iontophoretic study in the rat spinal cord. Brain Res. 1993;603:201–6. https://doi.org/10.1016/0006-8993(93)91238-N.

    Article  CAS  PubMed  Google Scholar 

  24. Boroujerdi A, Zeng J, Sharp K, Kim D, Steward O, Luo DZ. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states. Pain. 2011;152:649–55. https://doi.org/10.1016/j.pain.2010.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kusuyama K, Tachibana T, Yamanaka H, Okubo M, Yoshiya S, Noguchi K. Upregulation of calcium channel alpha-2-delta-1 subunit in dorsal horn contributes to spinal cord injury-induced tactile allodynia. Spine J. 2018;18:1062–9. https://doi.org/10.1016/j.spinee.2018.01.010.

    Article  PubMed  Google Scholar 

  26. Eide PK, Stubhaug A, Stenehjem AE. Central dysesthesia pain after traumatic spinal cord injury is dependent on N-methyl-d-aspartate receptor activation. Neurosurgery. 1995;37:1080–7. https://doi.org/10.1227/00006123-199512000-00007.

    Article  CAS  PubMed  Google Scholar 

  27. Hains BC, Johnson KM, Eaton MJ, Willis WD, Hulsebosch CE. Serotonergic neural precursor cell grafts attenuate bilateral hyperexcitability of dorsal horn neurons after spinal hemisection in rat. Neuroscience. 2003;116:1097–110. https://doi.org/10.1016/S0306-4522(02)00729-7.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang L, Voulalas P, Ji Y, Masri R. Post-translational modification of cortical GluA receptors in rodents following spinal cord lesion. Neuroscience. 2016;316:122–9. https://doi.org/10.1016/j.neuroscience.2015.12.038.

    Article  CAS  PubMed  Google Scholar 

  29. Takami K, Fujita-Hamabe W, Harada S, Tokuyama S. A β and A δ but not C-fibres are involved in stroke related pain and allodynia: an experimental study in mice. J Pharm Pharmacol. 2011;63:452–6. https://doi.org/10.1111/j.2042-7158.2010.01231.x.

    Article  CAS  PubMed  Google Scholar 

  30. Hama A, Sagen J. Activation of spinal and supraspinal cannabinoid-1 receptors leads to antinociception in a rat model of neuropathic spinal cord injury pain. Brain Res. 2011;1412:44–54. https://doi.org/10.1016/j.brainres.2011.07.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang M, Martin BR, Adler MW, Razdan RK, Ganea D, Tuma RF. Modulation of the balance between cannabinoid CB1 and CB2 receptor activation during cerebral ischemic/reperfusion injury. Neuroscience. 2008;152:753–60. https://doi.org/10.1016/j.neuroscience.2008.01.022.

    Article  CAS  PubMed  Google Scholar 

  32. Soliman N, Haroutounian S, Hohmann AG, Krane E, Liao J, Macleod M, et al. Systematic review and meta-analysis of cannabinoids, cannabis-based medicines, and endocannabinoid system modulators tested for antinociceptive effects in animal models of injury-related or pathological persistent pain. Pain. 2021;162:S26-44. https://doi.org/10.1097/j.pain.0000000000002269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaudet AD, Fonken LK. Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics. 2018;15:554–77. https://doi.org/10.1007/s13311-018-0630-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choo AM, Liu J, Lam CK, Dvorak M, Tetzlaff W, Oxland TR. Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J Neurosurg Spine. 2007;6:255–66. https://doi.org/10.3171/spi.2007.6.3.255.

    Article  PubMed  Google Scholar 

  35. Uceyler N, Rogausch JP, Toyka KV, Sommer C. Differential expression of cytokines in painful and painless neuropathies. Neurology. 2007;69:42–9. https://doi.org/10.1212/01.wnl.0000265062.92340.a5.

    Article  CAS  PubMed  Google Scholar 

  36. Ren Y, Young W. Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast. 2013;2013:1–9. https://doi.org/10.1155/2013/945034.

    Article  CAS  Google Scholar 

  37. Hanisch U-K. Microglia as a source and target of cytokines. Glia. 2002;40:140–55. https://doi.org/10.1002/glia.10161.

    Article  PubMed  Google Scholar 

  38. Ren Y, Zhou X, He X. Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regen Res. 2014;9:1787. https://doi.org/10.4103/1673-5374.143423.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kuan Y-H, Shih H-C, Tang S-C, Jeng J-S, Shyu B-C. Targeting P2X7 receptor for the treatment of central post-stroke pain in a rodent model. Neurobiol Dis. 2015;78:134–45. https://doi.org/10.1016/j.nbd.2015.02.028.

    Article  CAS  PubMed  Google Scholar 

  40. Munoz FM, Gao R, Tian Y, Henstenburg BA, Barrett JE, Hu H. Neuronal P2X7 receptor-induced reactive oxygen species production contributes to nociceptive behavior in mice. Sci Rep. 2017;7:3539. https://doi.org/10.1038/s41598-017-03813-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Rivero Vaccari JP, Bastien D, Yurcisin G, Pineau I, Dietrich WD, De Koninck Y, et al. P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci. 2012;32:3058–66. https://doi.org/10.1523/JNEUROSCI.4930-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsuda M, Masuda T, Tozaki-Saitoh H, Inoue K. P2X4 receptors and neuropathic pain. Front Cell Neurosci. 2013;7:191. https://doi.org/10.3389/fncel.2013.00191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwab JM, Guo L, Schluesener HJ. Spinal cord injury induces early and persistent lesional P2X4 receptor expression. J Neuroimmunol. 2005;163:185–9. https://doi.org/10.1016/j.jneuroim.2005.02.016.

    Article  CAS  PubMed  Google Scholar 

  44. Ozaki T, Muramatsu R, Sasai M, Yamamoto M, Kubota Y, Fujinaka T, et al. The P2X4 receptor is required for neuroprotection via ischemic preconditioning. Sci Rep. 2016;6:25893. https://doi.org/10.1038/srep25893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. Front Pharmacol. 2017;8:291. https://doi.org/10.3389/fphar.2017.00291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gritsch S, Lu J, Thilemann S, Wörtge S, Möbius W, Bruttger J, et al. Oligodendrocyte ablation triggers central pain independently of innate or adaptive immune responses in mice. Nat Commun. 2014;5:5472. https://doi.org/10.1038/ncomms6472.

    Article  CAS  PubMed  Google Scholar 

  47. Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007;10:1361–8. https://doi.org/10.1038/nn1992.

    Article  CAS  PubMed  Google Scholar 

  48. Sloane E, Ledeboer A, Seibert W, Coats B, van Strien M, Maier SF, et al. Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental multiple sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy. Brain Behav Immun. 2009;23:92–100. https://doi.org/10.1016/j.bbi.2008.09.004.

    Article  CAS  PubMed  Google Scholar 

  49. Thibaut A, Carvalho S, Morse LR, Zafonte R, Fregni F. Delayed pain decrease following M1 tDCS in spinal cord injury: a randomized controlled clinical trial. Neurosci Lett. 2017;658:19–26. https://doi.org/10.1016/j.neulet.2017.08.024.

    Article  CAS  PubMed  Google Scholar 

  50. Harte SE, Harris RE, Clauw DJ. The neurobiology of central sensitization. J Appl Behav Res. 2018. https://doi.org/10.1111/jabr.12137.

    Article  Google Scholar 

  51. Klit H, Finnerup NB, Jensen TS. Central post-stroke pain: clinical characteristics, pathophysiology, and management. Lancet Neurol. 2009;8:857–68. https://doi.org/10.1016/S1474-4422(09)70176-0.

    Article  PubMed  Google Scholar 

  52. Ramer LM, van Stolk AP, Inskip JA, Ramer MS, Krassioukov AV. Plasticity of TRPV1-expressing sensory neurons mediating autonomic dysreflexia following spinal cord injury. Front Physiol. 2012;3:257. https://doi.org/10.3389/fphys.2012.00257.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu Z, Yang Q, Crook RJ, O’Neil RG, Walters ET. TRPV1 channels make major contributions to behavioral hypersensitivity and spontaneous activity in nociceptors after spinal cord injury. Pain. 2013;154:2130–41. https://doi.org/10.1016/j.pain.2013.06.040.

    Article  CAS  PubMed  Google Scholar 

  54. Haroutounian S, Ford AL, Frey K, Nikolajsen L, Finnerup NB, Neiner A, et al. How central is central poststroke pain? The role of afferent input in poststroke neuropathic pain: a prospective, open-label pilot study. Pain. 2018;159:1317–24. https://doi.org/10.1097/j.pain.0000000000001213.

    Article  PubMed  Google Scholar 

  55. Kretzschmar M, Reining M. Dorsal root ganglion stimulation for treatment of central poststroke pain in the lower extremity after medullary infarction. Pain. 2021;162:2682–5. https://doi.org/10.1097/j.pain.0000000000002439.

    Article  PubMed  Google Scholar 

  56. Krause SJ, Backonja M-M. Development of a neuropathic pain questionnaire. Clin J Pain. 2003;19:306–14. https://doi.org/10.1097/00002508-200309000-00004.

    Article  PubMed  Google Scholar 

  57. Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005;114:29–36. https://doi.org/10.1016/j.pain.2004.12.010.

    Article  PubMed  Google Scholar 

  58. Freynhagen R, Baron R, Gockel U, Tölle TR. Pain DETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin. 2006;22:1911–20. https://doi.org/10.1185/030079906X132488.

    Article  PubMed  Google Scholar 

  59. Bennett M. The LANSS Pain Scale: the Leeds assessment of neuropathic symptoms and signs. Pain. 2001;92:147–57. https://doi.org/10.1016/s0304-3959(00)00482-6.

    Article  CAS  PubMed  Google Scholar 

  60. Bouhassira D, Attal N, Fermanian J, Alchaar H, Gautron M, Masquelier E, et al. Development and validation of the neuropathic pain symptom inventory. Pain. 2004;108:248–57. https://doi.org/10.1016/j.pain.2003.12.024.

    Article  PubMed  Google Scholar 

  61. Galer BS, Jensen MP. Development and preliminary validation of a pain measure specific to neuropathic pain: the Neuropathic Pain Scale. Neurology. 1997;48:332–8. https://doi.org/10.1212/wnl.48.2.332.

    Article  CAS  PubMed  Google Scholar 

  62. Attal N, Bouhassira D, Baron R. Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol. 2018;17:456–66. https://doi.org/10.1016/S1474-4422(18)30071-1.

    Article  PubMed  Google Scholar 

  63. Widerström-Noga E, Loeser JD, Jensen TS, Finnerup NB. AAPT diagnostic criteria for central neuropathic pain. J Pain. 2017;18:1417–26. https://doi.org/10.1016/j.jpain.2017.06.003.

    Article  PubMed  Google Scholar 

  64. Klit H, Finnerup NB, Overvad K, Andersen G, Jensen TS. Pain following stroke: a population-based follow-up study. PLoS ONE. 2011;6: e27607. https://doi.org/10.1371/journal.pone.0027607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harrison RA, Field TS. Post stroke pain: identification, assessment, and therapy. Cerebrovasc Dis. 2015;39:190–201. https://doi.org/10.1159/000375397.

    Article  PubMed  Google Scholar 

  66. Hansen AP, Marcussen NS, Klit H, Andersen G, Finnerup NB, Jensen TS. Pain following stroke: a prospective study: post-stroke pain. Eur J Pain. 2012;16:1128–36. https://doi.org/10.1002/j.1532-2149.2012.00123.x.

    Article  CAS  PubMed  Google Scholar 

  67. Andersen G, Vestergaard K, Ingeman-Nielsen M, Jensen TS. Incidence of central post-stroke pain. Pain. 1995;61:187–93. https://doi.org/10.1016/0304-3959(94)00144-4.

    Article  PubMed  Google Scholar 

  68. O’Donnell MJ, Diener H-C, Sacco RL, Panju AA, Vinisko R, Yusuf S. Chronic pain syndromes after ischemic stroke: PRoFESS Trial. Stroke. 2013;44:1238–43. https://doi.org/10.1161/STROKEAHA.111.671008.

    Article  PubMed  Google Scholar 

  69. Harno H, Haapaniemi E, Putaala J, Haanpaa M, Makela JP, Kalso E, et al. Central poststroke pain in young ischemic stroke survivors in the Helsinki Young Stroke Registry. Neurology. 2014;83:1147–54. https://doi.org/10.1212/WNL.0000000000000818.

    Article  PubMed  Google Scholar 

  70. Choi-Kwon S, Choi SH, Suh M, Choi S, Cho K-H, Nah H-W, et al. Musculoskeletal and central pain at 1 year post-stroke: associated factors and impact on quality of life. Acta Neurol Scand. 2017;135:419–25. https://doi.org/10.1111/ane.12617.

    Article  CAS  PubMed  Google Scholar 

  71. Kalita J, Kumar B, Misra UK, Pradhan PK. Central post stroke pain: clinical, MRI, and SPECT correlation. Pain Med. 2011;12:282–8. https://doi.org/10.1111/j.1526-4637.2010.01046.x.

    Article  PubMed  Google Scholar 

  72. Bowsher D. Allodynia in relation to lesion site in central post-stroke pain. J Pain. 2005;6:736–40. https://doi.org/10.1016/j.jpain.2005.06.009.

    Article  PubMed  Google Scholar 

  73. Krause T, Brunecker P, Pittl S, Taskin B, Laubisch D, Winter B, et al. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus. J Neurol Neurosurg Psychiatry. 2012;83:776–84. https://doi.org/10.1136/jnnp-2011-301936.

    Article  PubMed  Google Scholar 

  74. MacGowan DJL, Janal MN, Clark WC, Wharton RN, Lazar RM, Sacco RL, et al. Central poststroke pain and Wallenberg’s lateral medullary infarction: frequency, character, and determinants in 63 patients. Neurology. 1997;49:120–5. https://doi.org/10.1212/WNL.49.1.120.

    Article  CAS  PubMed  Google Scholar 

  75. Day GS, Swartz RH, Chenkin J, Shamji AI, Frost DW. Lateral medullary syndrome: a diagnostic approach illustrated through case presentation and literature review. CJEM. 2014;16:164–70. https://doi.org/10.2310/8000.2013.131059.

    Article  PubMed  Google Scholar 

  76. Treister AK, Hatch MN, Cramer SC, Chang EY. Demystifying poststroke pain: from etiology to treatment. PM R. 2017;9:63–75. https://doi.org/10.1016/j.pmrj.2016.05.015.

    Article  PubMed  Google Scholar 

  77. NSCISC. Application. https://www.nscisc.uab.edu/. Accessed 1 Aug 2021

  78. DeVivo MJ, Go BK, Jackson AB. Overview of the national spinal cord injury statistical center database. J Spinal Cord Med. 2002;25:335–8. https://doi.org/10.1080/10790268.2002.11753637.

    Article  PubMed  Google Scholar 

  79. DeVivo MJ. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord. 2012;50:365–72. https://doi.org/10.1038/sc.2011.178.

    Article  CAS  PubMed  Google Scholar 

  80. Finnerup NB, Norrbrink C, Trok K, Piehl F, Johannesen IL, Sørensen JC, et al. Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain. 2014;15:40–8. https://doi.org/10.1016/j.jpain.2013.09.008.

    Article  PubMed  Google Scholar 

  81. Bryce TN, Biering-Sørensen F, Finnerup NB, Cardenas DD, Defrin R, Lundeberg T, et al. International spinal cord injury pain classification: part I. Background and description. Spinal Cord. 2012;50:413–7. https://doi.org/10.1038/sc.2011.156.

    Article  CAS  PubMed  Google Scholar 

  82. van Gorp S, Kessels AG, Joosten EA, van Kleef M, Patijn J. Pain prevalence and its determinants after spinal cord injury: a systematic review: spinal cord injury pain determinants. Eur J Pain. 2015;19:5–14. https://doi.org/10.1002/ejp.522.

    Article  PubMed  Google Scholar 

  83. Finnerup NB. Neuropathic pain and spasticity: intricate consequences of spinal cord injury. Spinal Cord. 2017;55:1046–50. https://doi.org/10.1038/sc.2017.70.

    Article  CAS  PubMed  Google Scholar 

  84. Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: a systematic review and meta-analysis. Eur J Pain. 2017;21:29–44. https://doi.org/10.1002/ejp.905.

    Article  CAS  PubMed  Google Scholar 

  85. Shiao R, Lee-Kubli CA. Neuropathic pain after spinal cord injury: challenges and research perspectives. Neurotherapeutics. 2018;15:635–53. https://doi.org/10.1007/s13311-018-0633-4.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hatch MN, Cushing TR, Carlson GD, Chang EY. Neuropathic pain and SCI: identification and treatment strategies in the 21st century. J Neurol Sci. 2018;384:75–83. https://doi.org/10.1016/j.jns.2017.11.018.

    Article  PubMed  Google Scholar 

  87. Murray RF, Asghari A, Egorov DD, Rutkowski SB, Siddall PJ, Soden RJ, et al. Impact of spinal cord injury on self-perceived pre- and postmorbid cognitive, emotional and physical functioning. Spinal Cord. 2007;45:429–36. https://doi.org/10.1038/sj.sc.3102022.

    Article  CAS  PubMed  Google Scholar 

  88. Putzke JD, Richards SJ, Hicken BL, DeVivo MJ. Interference due to pain following spinal cord injury: important predictors and impact on quality of life. Pain. 2002;100:231–42. https://doi.org/10.1016/S0304-3959(02)00069-6.

    Article  PubMed  Google Scholar 

  89. Katz SI. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol. 2015;28:193–205. https://doi.org/10.1097/WCO.0000000000000206.

    Article  Google Scholar 

  90. Nurmikko TJ, Gupta S, Maclver K. Multiple sclerosis-related central pain disorders. Curr Pain Headache Rep. 2010;14:189–95. https://doi.org/10.1007/s11916-010-0108-8.

    Article  PubMed  Google Scholar 

  91. Foley PL, Vesterinen HM, Laird BJ, Sena ES, Colvin LA, Chandran S, et al. Prevalence and natural history of pain in adults with multiple sclerosis: systematic review and meta-analysis. Pain. 2013;154:632–42. https://doi.org/10.1016/j.pain.2012.12.002.

    Article  PubMed  Google Scholar 

  92. Martinelli Boneschi F, Colombo B, Annovazzi P, Martinelli V, Bernasconi L, Solaro C, et al. Lifetime and actual prevalence of pain and headache in multiple sclerosis. Mult Scler. 2008;14:514–21. https://doi.org/10.1177/1352458507085551.

    Article  CAS  PubMed  Google Scholar 

  93. Khan N, Smith MT. Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacol. 2014;22:1–22. https://doi.org/10.1007/s10787-013-0195-3.

    Article  CAS  Google Scholar 

  94. Al-Araji AH, Oger J. Reappraisal of Lhermitte’s sign in multiple sclerosis. Mult Scler. 2005;11:398–402. https://doi.org/10.1191/1352458505ms1177oa.

    Article  PubMed  Google Scholar 

  95. Ferraro D, Annovazzi P, Moccia M, Lanzillo R, De Luca G, Nociti V, et al. Characteristics and treatment of multiple sclerosis-related trigeminal neuralgia: an Italian multi-centre study. Mult Scler Related Disord. 2020;37: 101461. https://doi.org/10.1016/j.msard.2019.101461.

    Article  Google Scholar 

  96. Laakso SM, Hekali O, Kurdo G, Martola J, Sairanen T, Atula S. Trigeminal neuralgia in multiple sclerosis: prevalence and association with demyelination. Acta Neurol Scand. 2020;142:139–44. https://doi.org/10.1111/ane.13243.

    Article  PubMed  Google Scholar 

  97. Truini A, Barbanti P, Pozzilli C, Cruccu G. A mechanism-based classification of pain in multiple sclerosis. J Neurol. 2013;260:351–67. https://doi.org/10.1007/s00415-012-6579-2.

    Article  CAS  PubMed  Google Scholar 

  98. Cleveland Clinic. Pain in multiple sclerosis fact sheet. https://my.clevelandclinic.org/departments/neurological/depts/multiple-sclerosis/ms-approaches/pain-in-ms. Accessed 1 Aug 2021

  99. Staudt MD, Clark AJ, Gordon AS, Lynch ME, Morley-Forster PK, Nathan H, et al. Long-term outcomes in the management of central neuropathic pain syndromes: a prospective observational cohort study. Can J Neurol Sci. 2018;45:545–52. https://doi.org/10.1017/cjn.2018.55.

    Article  PubMed  Google Scholar 

  100. Liampas A, Velidakis N, Georgiou T, Vadalouca A, Varrassi G, Hadjigeorgiou GM, et al. Prevalence and management challenges in central post-stroke neuropathic pain: a systematic review and meta-analysis. Adv Ther. 2020;37:3278–91. https://doi.org/10.1007/s12325-020-01388-w.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14:162–73. https://doi.org/10.1016/S1474-4422(14)70251-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Deng Y, Luo L, Hu Y, Fang K, Liu J. Clinical practice guidelines for the management of neuropathic pain: a systematic review. BMC Anesthesiol. 2015;16:12. https://doi.org/10.1186/s12871-015-0150-5.

    Article  Google Scholar 

  103. Moulin D, Boulanger A, Clark A, Clarke H, Dao T, Finley G, et al. Pharmacological management of chronic neuropathic pain: revised consensus statement from the Canadian Pain Society. Pain Res Manag. 2014;19:328–35. https://doi.org/10.1155/2014/754693.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Attal N, Cruccu G, Baron R, Haanpää M, Hansson P, Jensen TS, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision: treatment of neuropathic pain. Eur J Neurol. 2010;17:1113-e88. https://doi.org/10.1111/j.1468-1331.2010.02999.x.

    Article  CAS  PubMed  Google Scholar 

  105. Attal N. Pharmacological treatments of neuropathic pain: the latest recommendations. Rev Neurol (Paris). 2019;175:46–50. https://doi.org/10.1016/j.neurol.2018.08.005.

    Article  CAS  PubMed  Google Scholar 

  106. Schneider J, Patterson M, Jimenez XF. Beyond depression: Other uses for tricyclic antidepressants. CCJM. 2019;86:807–814. https://doi.org/10.3949/ccjm.86a.19005

  107. Obata H. Analgesic Mechanisms of Antidepressants for Neuropathic Pain. IJMS. 2017;18:2483. https://doi.org/10.3390/ijms18112483

  108. Moore RA, Derry S, Aldington D, Cole P, Wiffen PJ. Amitriptyline for neuropathic pain in adults. Cochrane Pain, Palliative and Supportive Care Group, editor. Cochrane Database System Rev. 2015. https://doi.org/10.1002/14651858.CD008242.pub3

  109. Derry S, Wiffen PJ, Aldington D, Moore RA. Nortriptyline for neuropathic pain in adults. Cochrane Pain, Palliative and Supportive Care Group, editor. Cochrane Database System Rev. 2015. https://doi.org/10.1002/14651858.CD011209.pub2

  110. Hearn L, Moore RA, Derry S, Wiffen PJ, Phillips T. Desipramine for neuropathic pain in adults. In: The Cochrane Collaboration, editor. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons, Ltd; 2014. p. CD011003.pub2. https://doi.org/10.1002/14651858.CD011003.pub2

  111. Leijon G, Boivie J. Central post-stroke pain: a controlled trial of amitriptyline and carbamazepine. Pain. 1989;36:27–36. https://doi.org/10.1016/0304-3959(89)90108-5.

    Article  CAS  PubMed  Google Scholar 

  112. Rintala DH, Holmes SA, Courtade D, Fiess RN, Tastard LV, Loubser PG. Comparison of the effectiveness of amitriptyline and gabapentin on chronic neuropathic pain in persons with spinal cord injury. Arch Phys Med Rehabil. 2007;88:1547–60. https://doi.org/10.1016/j.apmr.2007.07.038.

    Article  PubMed  Google Scholar 

  113. Cardenas DD, Warms CA, Turner JA, Marshall H, Brooke MM, Loeser JD. Efficacy of amitriptyline for relief of pain in spinal cord injury: results of a randomized controlled trial. Pain. 2002;96:365–73. https://doi.org/10.1016/S0304-3959(01)00483-3.

    Article  CAS  PubMed  Google Scholar 

  114. Murphy KL, Bethea JR, Fischer R. Neuropathic pain in multiple sclerosis—current therapeutic intervention and future treatment perspectives. In: Zagon IS, McLaughlin PJ, editors. Multiple sclerosis: perspectives in treatment and pathogenesis. Brisbane (AU): Codon Publications; 2017. http://www.ncbi.nlm.nih.gov/books/NBK470151/.

  115. Solaro C, Messmer Uccelli M. Pharmacological management of pain in patients with multiple sclerosis. Drugs. 2010;1. https://doi.org/10.2165/11537930-000000000-00000

  116. Sansone RA, Sansone LA. Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison. Innov Clin Neurosci. 2014;11:37–42.

  117. Lee Y-C, Chen P-P. A review of SSRIs and SNRIs in neuropathic pain. Expert Opin Pharmacother. 2010;11:2813–2825. https://doi.org/10.1517/14656566.2010.507192

  118. Watson PNC, Gilron I, Sawynok J, Lynch ME. Nontricyclic antidepressant analgesics and pain: are serotonin norepinephrine reuptake inhibitors (SNRIs) any better? Pain. 2011;152:2206–2210. https://doi.org/10.1016/j.pain.2011.05.032

  119. Kim NY, Lee SC, Kim YW. Effect of duloxetine for the treatment of chronic central poststroke pain. Clin Neuropharm. 2019;42:73–6. https://doi.org/10.1097/WNF.0000000000000330.

    Article  CAS  Google Scholar 

  120. Vranken JH, Hollmann MW, van der Vegt MH, Kruis MR, Heesen M, Vos K, et al. Duloxetine in patients with central neuropathic pain caused by spinal cord injury or stroke: a randomized, double-blind, placebo-controlled trial. Pain. 2011;152:267–73. https://doi.org/10.1016/j.pain.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  121. Vollmer TL, Robinson MJ, Risser RC, Malcolm SK. A randomized, double-blind, placebo-controlled trial of duloxetine for the treatment of pain in patients with multiple sclerosis. Pain Pract. 2014;14:732–44. https://doi.org/10.1111/papr.12127

  122. Brown TR, Slee A. A randomized placebo-controlled trial of duloxetine for central pain in multiple sclerosis. Int J MS Care. 2015;17:83–9. https://doi.org/10.7224/1537-2073.2014-001.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Richards JS, Bombardier CH, Wilson CS, Chiodo AE, Brooks L, Tate DG, et al. Efficacy of Venlafaxine XR for the treatment of pain in patients with spinal cord injury and major depression: a randomized, controlled trial. Arch Phys Med Rehabil. 2015;96:680–89. https://doi.org/10.1016/j.apmr.2014.11.024.

  124. Shimodozono M, Kawahira K, Kamishita T, Ogata A, Tohgo S-I, Tanaka N. Reduction of central poststroke pain with the selective serotonin reuptake inhibitor fluvoxamine. Int J Neurosci. 2002;112:1173–81. https://doi.org/10.1080/00207450290026139.

  125. Kumar B, Kalita J, Kumar G, Misra UK. Central poststroke pain: a review of pathophysiology and treatment. Anesthesia & Analgesia. 2009;108:1645–1657. https://doi.org/10.1213/ane.0b013e31819d644c

  126. Davidoff G, Guarracini M, Roth E, Sliwa J, Yarkony G. Trazodone hydrochloride in the treatment of dysesthetic pain in traumatic myelopathy: a randomized, double-blind, placebo-controlled study. Pain. 1987;29:151–61. https://doi.org/10.1016/0304-3959(87)91032-3

  127. Gao M, Yan X, Weng H-R. Inhibition of glycogen synthase kinase 3beta activity with lithium prevents and attenuates paclitaxel-induced neuropathic pain. Neuroscience. 2013;254:301–11. https://doi.org/10.1016/j.neuroscience.2013.09.033

  128. Weinsanto I, Mouheiche J, Laux-Biehlmann A, Aouad M, Maduna T, Petit-Demoulière N, et al. Lithium reverses mechanical allodynia through a mu opioid-dependent mechanism. Mol Pain. 2018;14:174480691775414. https://doi.org/10.1177/1744806917754142

  129. Yang ML, Li JJ, So KF, Chen JYH, Cheng WS, Wu J, et al. Efficacy and safety of lithium carbonate treatment of chronic spinal cord injuries: a double-blind, randomized, placebo-controlled clinical trial. Spinal Cord. 2012;50:141–6. https://doi.org/10.1038/sc.2011.126.

    Article  CAS  PubMed  Google Scholar 

  130. Rock DM, Kelly KM, Macdonald RL. Gabapentin actions on ligand- and voltage-gated responses in cultured rodent neurons. Epilepsy Res. 1993;16:89–98. https://doi.org/10.1016/0920-1211(93)90023-Z.

    Article  CAS  PubMed  Google Scholar 

  131. Taylor CP, Gee NS, Su T-Z, Kocsis JD, Welty DF, Brown JP, et al. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res. 1998;29:233–49. https://doi.org/10.1016/S0920-1211(97)00084-3.

    Article  CAS  PubMed  Google Scholar 

  132. Lanneau C, Green A, Hirst WD, Wise A, Brown JT, Donnier E, et al. Gabapentin is not a GABAB receptor agonist. Neuropharmacology. 2001;41:965–75. https://doi.org/10.1016/S0028-3908(01)00140-X.

    Article  CAS  PubMed  Google Scholar 

  133. Jensen AA, Mosbacher J, Elg S, Lingenhoehl K, Lohmann T, Johansen TN, et al. The anticonvulsant gabapentin (neurontin) does not act through gamma-aminobutyric acid-B receptors. Mol Pharmacol. 2002;61(6):1377–84.

    Article  CAS  Google Scholar 

  134. Gee NS, Brown JP, Dissanayake VUK, Offord J, Thurlow R, Woodruff GN. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel. J Biol Chem. 1996;271:5768–76. https://doi.org/10.1074/jbc.271.10.5768.

    Article  CAS  PubMed  Google Scholar 

  135. Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su T-Z, et al. Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci. 2006;103:17537–42. https://doi.org/10.1073/pnas.0409066103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology. 2020;168: 107966. https://doi.org/10.1016/j.neuropharm.2020.107966.

    Article  CAS  PubMed  Google Scholar 

  137. Kotev M, Pascual R, Almansa C, Guallar V, Soliva R. Pushing the limits of computational structure-based drug design with a cryo-EM structure: the Ca2+ channel α2δ-1 subunit as a test case. J Chem Inf Model. 2018;58:1707–15. https://doi.org/10.1021/acs.jcim.8b00347.

    Article  CAS  PubMed  Google Scholar 

  138. Patel R, Dickenson AH. Mechanisms of the gabapentinoids and α2 δ-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect. 2016;4: e00205. https://doi.org/10.1002/prp2.205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fink K, Dooley DJ, Meder WP, Suman-Chauhan N, Duffy S, Clusmann H, et al. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology. 2002;42:229–36. https://doi.org/10.1016/S0028-3908(01)00172-1.

    Article  CAS  PubMed  Google Scholar 

  140. Dooley DJ, Mieske CA, Borosky SA. Inhibition of K+-evoked glutamate release from rat neocortical and hippocampal slices by gabapentin. Neurosci Lett. 2000;280:107–10. https://doi.org/10.1016/S0304-3940(00)00769-2.

    Article  CAS  PubMed  Google Scholar 

  141. Bockbrader HN, Wesche D, Miller R, Chapel S, Janiczek N, Burger P. A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin Pharmacokinet. 2010;49:661–9. https://doi.org/10.2165/11536200-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  142. Hesami O, Mansouri B, Sistanizad M. The efficacy of gabapentin in patients with central post-stroke pain. Iran J Pharm Res. 2015;14(Suppl):95–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kalita J, Chandra S, Misra UK. poststroke pain: a pilot study. Neurol India. 2017;65:7.

    Google Scholar 

  144. Kim JS, Bashford G, Murphy KT, Martin A, Dror V, Cheung R. Safety and efficacy of pregabalin in patients with central post-stroke pain. Pain. 2011;152:1018–23. https://doi.org/10.1016/j.pain.2010.12.023.

    Article  CAS  PubMed  Google Scholar 

  145. To T-P, Lim T, Hill S, Frauman A, Cooper N, Kirsa S, et al. Gabapentin for neuropathic pain following spinal cord injury. Spinal Cord. 2002;40:282–5. https://doi.org/10.1038/sj.sc.3101300.

    Article  PubMed  Google Scholar 

  146. Levendoğlu F, Öğün CÖ, Özerbil Ö, Öğün TC, Uğurlu H. Gabapentin is a first line drug for the treatment of neuropathic pain in spinal cord injury. Spine. 2004;29:743–51. https://doi.org/10.1097/01.BRS.0000112068.16108.3A.

    Article  PubMed  Google Scholar 

  147. Tai Q, Kirshblum S, Chen B, Millis S, Johnston M, DeLisa JA. Gabapentin in the treatment of neuropathic pain after spinal cord injury: a prospective, randomized, double-blind, crossover trial. J Spinal Cord Med. 2002;25:100–5. https://doi.org/10.1080/10790268.2002.11753609.

    Article  PubMed  Google Scholar 

  148. Siddall PJ, Cousins MJ, Otte A, Griesing T, Chambers R, Murphy TK. Pregabalin in central neuropathic pain associated with spinal cord injury: a placebo-controlled trial. Neurology. 2006;67:1792–800.

    Article  CAS  Google Scholar 

  149. Vranken JH, Dijkgraaf MGW, Kruis MR, van der Vegt MH, Hollmann MW, Heesen M. Pregabalin in patients with central neuropathic pain: a randomized, double-blind, placebo-controlled trial of a flexible-dose regimen. Pain. 2008;136:150–7. https://doi.org/10.1016/j.pain.2007.06.033.

    Article  CAS  PubMed  Google Scholar 

  150. Cardenas DD, Nieshoff EC, Suda K, Goto S-I, Sanin L, Kaneko T, et al. A randomized trial of pregabalin in patients with neuropathic pain due to spinal cord injury. Neurology. 2013;80:533–9. https://doi.org/10.1212/WNL.0b013e318281546b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Solaro C, Lunardi GL, Capello E, Inglese M, Uccelli MM, Uccelli A, et al. An open-lebel trial of gabapentin treatment of paroxysmal symptoms in multiple sclerosis patients. Neurology. 1998;51:609–11. https://doi.org/10.1212/WNL.51.2.609.

    Article  CAS  PubMed  Google Scholar 

  152. Solaro C, Boehmker M, Tanganelli P. Pregabalin for treating paroxysmal painful symptoms in multiple sclerosis: a pilot study. J Neurol. 2009;256:1773–4. https://doi.org/10.1007/s00415-009-5203-6.

    Article  PubMed  Google Scholar 

  153. Onouchi K, Yokoyama K, Yoshiyama T, Koga H. An open-label, long-term study examining the safety and tolerability of pregabalin in Japanese patients with central neuropathic pain. J Pain Res. 2014;7:439–47. https://doi.org/10.2147/JPR.S63028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vestergaard K, Andersen G, Gottrup H, Kristensen BT, Jensen TS. Lamotrigine for central poststroke pain: a randomized controlled trial. Neurology. 2001;56:184–90. https://doi.org/10.1212/WNL.56.2.184.

    Article  CAS  PubMed  Google Scholar 

  155. Carrieri PB, Provitera V, Lavorgna L, Bruno R. Response of thalamic pain syndrome to lamotrigine. Eur J Neurol. 1998;5:625–6. https://doi.org/10.1046/j.1468-1331.1998.560625.x.

    Article  CAS  PubMed  Google Scholar 

  156. Canavero S, Bonicalzi V. Lamotrigine control of central pain. Pain. 1996;68:179–81. https://doi.org/10.1016/S0304-3959(96)03168-5.

    Article  CAS  PubMed  Google Scholar 

  157. Finnerup NB, Sindrup SH, Bach FW, Johannesen IL, Jensen TS. Lamotrigine in spinal cord injury pain: a randomized controlled trial. Pain. 2002;96:375–83. https://doi.org/10.1016/S0304-3959(01)00484-5.

    Article  CAS  PubMed  Google Scholar 

  158. Breuer B, Pappagallo M, Knotkova H, Guleyupoglu N, Wallenstein S, Portenoy R. A randomized, double-blind, placebo-controlled, two-period, crossover, pilot trial of lamotrigine in patients with central pain due to multiple sclerosis. Clin Ther. 2007;29:2022–30. https://doi.org/10.1016/j.clinthera.2007.09.023.

    Article  CAS  PubMed  Google Scholar 

  159. Silver M, Blum D, Grainger J, Hammer AE, Quessy S. Double-blind, placebo-controlled trial of lamotrigine in combination with other medications for neuropathic pain. J Pain Symptom Manag. 2007;34:446–54. https://doi.org/10.1016/j.jpainsymman.2006.12.015.

    Article  CAS  Google Scholar 

  160. Wiffen PJ, Derry S, Moore RA. Lamotrigine for chronic neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev. 2013;2013(12): CD006044. https://doi.org/10.1002/14651858.CD006044.pub4.

    Article  PubMed Central  Google Scholar 

  161. Jungehulsing GJ, Israel H, Safar N, Taskin B, Nolte CH, Brunecker P, et al. Levetiracetam in patients with central neuropathic post-stroke pain: a randomized, double-blind, placebo-controlled trial. Eur J Neurol. 2013;20:331–7. https://doi.org/10.1111/j.1468-1331.2012.03857.x.

    Article  CAS  PubMed  Google Scholar 

  162. Finnerup NB, Grydehøj J, Bing J, Johannesen IL, Biering-Sørensen F, Sindrup SH, et al. Levetiracetam in spinal cord injury pain: a randomized controlled trial. Spinal Cord. 2009;47:861–7. https://doi.org/10.1038/sc.2009.55.

    Article  CAS  PubMed  Google Scholar 

  163. Falah M, Madsen C, Holbech JV, Sindrup SH. A randomized, placebo-controlled trial of levetiracetam in central pain in multiple sclerosis: levetiracetam in central pain in multiple sclerosis. Eur J Pain. 2012;16:860–9. https://doi.org/10.1002/j.1532-2149.2011.00073.x.

    Article  CAS  PubMed  Google Scholar 

  164. Rossi S, Mataluni G, Codecà C, Fiore S, Buttari F, Musella A, et al. Effects of levetiracetam on chronic pain in multiple sclerosis: results of a pilot, randomized, placebo-controlled study. Eur J Neurol. 2009;16:360–6. https://doi.org/10.1111/j.1468-1331.2008.02496.x.

    Article  CAS  PubMed  Google Scholar 

  165. Wiffen PJ, Derry S, Moore RA, Lunn MP. Levetiracetam for neuropathic pain in adults. Cochrane Database Syst Rev. 2014;2014(7): CD010943. https://doi.org/10.1002/14651858.CD010943.

    Article  PubMed Central  Google Scholar 

  166. Drewes AM, Andreasen A, Poulsen LH. Valproate for treatment of chronic central pain after spinal cord injury: a double-blind cross-over study. Spinal Cord. 1994;32:565–9. https://doi.org/10.1038/sc.1994.89.

    Article  CAS  Google Scholar 

  167. Dinoff BL, Richards JS, Ness TJ. Use of topiramate for spinal cord injury-related pain. J Spinal Cord Med. 2003;26:401–3. https://doi.org/10.1080/10790268.2003.11753712.

    Article  PubMed  Google Scholar 

  168. Siniscalchi A, Gallelli L, De Sarro G. Effects of topiramate on dysaesthetic pain in a patient with multiple sclerosis. Clin Drug Investig. 2013;33:151–4. https://doi.org/10.1007/s40261-012-0051-z.

    Article  PubMed  Google Scholar 

  169. Chang VT. Intravenous phenytoin in the management of crescendo pelvic cancer-related pain. J Pain Symptom Manag. 1997;13:238–40. https://doi.org/10.1016/s0885-3924(97)00083-3.

    Article  CAS  Google Scholar 

  170. Tate R, Rubin LM, Krajewski KC. Treatment of refractory trigeminal neuralgia with intravenous phenytoin. Am J Health Syst Pharm. 2011;68:2059–61. https://doi.org/10.2146/ajhp100636.

    Article  CAS  PubMed  Google Scholar 

  171. McCleane GJ. Intravenous infusion of phenytoin relieves neuropathic pain: a randomized, double-blinded, placebo-controlled, crossover study. Anesth Analg. 1999;89(4):985–8.

    Article  CAS  Google Scholar 

  172. Hearn L, Derry S, Moore RA. Lacosamide for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev. 2012;2012(2): CD009318. https://doi.org/10.1002/14651858.CD009318.pub2.

    Article  PubMed Central  Google Scholar 

  173. de Greef BTA, Hoeijmakers JGJ, Geerts M, Oakes M, Church TJE, Waxman SG, et al. Lacosamide in patients with Nav1.7 mutations-related small fibre neuropathy: a randomized controlled trial. Brain. 2019;142:263–75. https://doi.org/10.1093/brain/awy329.

    Article  PubMed  Google Scholar 

  174. Hao J-X, Stöhr T, Selve N, Wiesenfeld-Hallin Z, Xu X-J. Lacosamide, a new anti-epileptic, alleviates neuropathic pain-like behaviors in rat models of spinal cord or trigeminal nerve injury. Eur J Pharmacol. 2006;553:135–40. https://doi.org/10.1016/j.ejphar.2006.09.040.

    Article  CAS  PubMed  Google Scholar 

  175. Scuteri D, Mantovani E, Tamburin S, Sandrini G, Corasaniti MT, Bagetta G, et al. Opioids in post-stroke pain: a systematic review and meta-analysis. Front Pharmacol. 2020;11: 587050. https://doi.org/10.3389/fphar.2020.587050.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Prommer E. Levorphanol: revisiting an underutilized analgesic. Palliat Care. 2014;8:7–10. https://doi.org/10.4137/PCRT.S13489.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Rowbotham MC, Twilling L, Davies PS, Reisner L, Taylor K, Mohr D. Oral opioid therapy for chronic peripheral and central neuropathic pain. N Engl J Med. 2003;348:1223–32. https://doi.org/10.1056/NEJMoa021420.

    Article  CAS  PubMed  Google Scholar 

  178. Guetti C, Angeletti C, Marinangeli F, Ciccozzi A, Baldascino G, Paladini A, et al. Transdermal buprenorphine for central neuropathic pain: clinical reports. Pain Pract. 2011;11:446–52. https://doi.org/10.1111/j.1533-2500.2010.00434.x.

    Article  PubMed  Google Scholar 

  179. Weiner M, Sarantopoulos C, Gordon E. Transdermal buprenorphine controls central neuropathic pain. J Opioid Manag. 2012;8:414–5. https://doi.org/10.5055/jom.2012.0141.

    Article  PubMed  Google Scholar 

  180. Barrera-Chacon JM, Mendez-Suarez JL, Jáuregui-Abrisqueta ML, Palazon R, Barbara-Bataller E, García-Obrero I. Oxycodone improves pain control and quality of life in anticonvulsant-pretreated spinal cord-injured patients with neuropathic pain. Spinal Cord. 2011;49:36–42. https://doi.org/10.1038/sc.2010.101.

    Article  CAS  PubMed  Google Scholar 

  181. Oh H, Seo W. A comprehensive review of central post-stroke pain. Pain Manag Nurs. 2015;16:804–18. https://doi.org/10.1016/j.pmn.2015.03.002.

    Article  PubMed  Google Scholar 

  182. Attal N, Guirimand F, Brasseur L, Gaude V, Chauvin M, Bouhassira D. Effects of IV morphine in central pain: a randomized placebo-controlled study. Neurology. 2002;58:554–63. https://doi.org/10.1212/WNL.58.4.554.

    Article  CAS  PubMed  Google Scholar 

  183. Kalman S, Osterberg A, Sörensen J, Boivie J, Bertler A. Morphine responsiveness in a group of well-defined multiple sclerosis patients: a study with i.v. morphine. Eur J Pain. 2002;6:69–80. https://doi.org/10.1053/eujp.2001.0307.

    Article  CAS  PubMed  Google Scholar 

  184. Bainton T, Fox M, Bowsher D, Wells C. A double-blind trial of naloxone in central post-stroke pain. Pain. 1992;48:159–62. https://doi.org/10.1016/0304-3959(92)90052-D.

    Article  PubMed  Google Scholar 

  185. Norrbrink C, Lundeberg T. Tramadol in neuropathic pain after spinal cord injury: a randomized, double-blind, placebo-controlled trial. Clin J Pain. 2009;25:177–84. https://doi.org/10.1097/AJP.0b013e31818a744d.

    Article  PubMed  Google Scholar 

  186. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43:879–923.

    Article  CAS  Google Scholar 

  187. Maldonado R, Baños JE, Cabañero D. The endocannabinoid system and neuropathic pain. Pain. 2016;157:S23-32. https://doi.org/10.1097/j.pain.0000000000000428.

    Article  CAS  PubMed  Google Scholar 

  188. Fisher E, Moore RA, Fogarty AE, Finn DP, Finnerup NB, Gilron I, et al. Cannabinoids, cannabis, and cannabis-based medicine for pain management: a systematic review of randomised controlled trials. Pain. 2021;162:S45-66. https://doi.org/10.1097/j.pain.0000000000001929.

    Article  CAS  PubMed  Google Scholar 

  189. Wilsey B, Marcotte TD, Deutsch R, Zhao H, Prasad H, Phan A. An exploratory human laboratory experiment evaluating vaporized cannabis in the treatment of neuropathic pain from spinal cord injury and disease. J Pain. 2016;17:982–1000. https://doi.org/10.1016/j.jpain.2016.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rintala DH, Fiess RN, Tan G, Holmes SA, Bruel BM. Effect of dronabinol on central neuropathic pain after spinal cord injury: a pilot study. Am J Phys Med Rehabil. 2010;89:840–8. https://doi.org/10.1097/PHM.0b013e3181f1c4ec.

    Article  PubMed  Google Scholar 

  191. Torres-Moreno MC, Papaseit E, Torrens M, Farré M. Assessment of efficacy and tolerability of medicinal cannabinoids in patients with multiple sclerosis: a systematic review and meta-analysis. JAMA Netw Open. 2018;1: e183485. https://doi.org/10.1001/jamanetworkopen.2018.3485.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ. 2004;329:253. https://doi.org/10.1136/bmj.38149.566979.AE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology. 2005;65:812–9. https://doi.org/10.1212/01.wnl.0000176753.45410.8b.

    Article  PubMed  Google Scholar 

  194. Langford RM, Mares J, Novotna A, Vachova M, Novakova I, Notcutt W, et al. A double-blind, randomized, placebo-controlled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis. J Neurol. 2013;260: 984997. https://doi.org/10.1007/s00415-012-6739-4.

    Article  CAS  Google Scholar 

  195. Turcotte D, Doupe M, Torabi M, Gomori A, Ethans K, Esfahani F, et al. Nabilone as an adjunctive to gabapentin for multiple sclerosis-induced neuropathic pain: a randomized controlled trial. Pain Med. 2015;16:149–59. https://doi.org/10.1111/pme.12569.

    Article  PubMed  Google Scholar 

  196. Schimrigk S, Marziniak M, Neubauer C, Kugler EM, Werner G, Abramov-Sommariva D. Dronabinol is a safe long-term treatment option for neuropathic pain patients. Eur Neurol. 2017;78:320–9. https://doi.org/10.1159/000481089.

    Article  CAS  PubMed  Google Scholar 

  197. Mohiuddin M, Blyth FM, Degenhardt L, Forti MD, Eccleston C, Haroutounian S, et al. General risks of harm with cannabinoids, cannabis, and cannabis-based medicine possibly relevant to patients receiving these for pain management: an overview of systematic reviews. Pain. 2021;162(Suppl. 17):S80-96.

    PubMed  Google Scholar 

  198. Yang X, Wei X, Mu Y, Li Q, Liu J. A review of the mechanism of the central analgesic effect of lidocaine. Medicine. 2020;99: e19898. https://doi.org/10.1097/MD.0000000000019898.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Challapalli V, Tremont-Lukats IW, McNicol ED, Lau J, Carr DB. Systemic administration of local anesthetic agents to relieve neuropathic pain. Cochrane Database Syst Rev. 2005;2005: CD003345. https://doi.org/10.1002/14651858.CD003345.pub2.

    Article  PubMed Central  Google Scholar 

  200. Olschewski A, Hempelmann G, Vogel W, Safronov BV. Blockade of Na+ and K+ currents by local anesthetics in the dorsal horn neurons of the spinal cord. Anesthesiology. 1998;88:172–9. https://doi.org/10.1097/00000542-199801000-00025.

    Article  CAS  PubMed  Google Scholar 

  201. Wolff M, Schnöbel-Ehehalt R, Mühling J, Weigand MA, Olschewski A. Mechanisms of lidocaine’s action on subtypes of spinal dorsal horn neurons subject to the diverse roles of Na+ and K+ channels in action potential generation. Anesth Analg. 2014;119:463–70. https://doi.org/10.1213/ANE.0000000000000280.

    Article  CAS  PubMed  Google Scholar 

  202. Sugimoto M, Uchida I, Mashimo T. Local anaesthetics have different mechanisms and sites of action at the recombinant N-methyl-d-aspartate (NMDA) receptors: inhibition of NMDA receptors by local anaesthetics. Br J Pharmacol. 2003;138:876–82. https://doi.org/10.1038/sj.bjp.0705107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Su D, Gu Y, Wang Z, Wang X. Lidocaine attenuates proinflammatory cytokine production induced by extracellular adenosine triphosphate in cultured rat microglia. Anesth Analg. 2010;111:768–74. https://doi.org/10.1213/ANE.0b013e3181e9e897.

    Article  CAS  PubMed  Google Scholar 

  204. Lynch JW, Zhang Y, Talwar S, Estrada-Mondragon A. Glycine receptor drug discovery. Adv Pharmacol. 2017;79:225–53. https://doi.org/10.1016/bs.apha.2017.01.003.

    Article  CAS  PubMed  Google Scholar 

  205. Kvarnstrom A, Karlsten R, Quiding H, Gordh T. The analgesic effect of intravenous ketamine and lidocaine on pain after spinal cord injury. Acta Anaesthesiol Scand. 2004;48:498–506. https://doi.org/10.1111/j.1399-6576.2003.00330.x.

    Article  CAS  PubMed  Google Scholar 

  206. Finnerup NB, Biering-Sørensen F, Johannesen IL, Terkelsen AJ, Juhl GI, Kristensen AD, et al. Intravenous lidocaine relieves spinal cord injury pain: a randomized controlled trial. Anesthesiology. 2005;102:1023–30. https://doi.org/10.1097/00000542-200505000-00023.

    Article  CAS  PubMed  Google Scholar 

  207. Sakurai M, Kanazawa I. Positive symptoms in multiple sclerosis: their treatment with sodium channel blockers, lidocaine and mexiletine. J Neurol Sci. 1999;162:162–8. https://doi.org/10.1016/S0022-510X(98)00322-0.

    Article  CAS  PubMed  Google Scholar 

  208. Awerbuch GI, Sandyk R. Mexiletine for thalamic pain syndrome. Int JNeurosci. 1990;55:129–33. https://doi.org/10.3109/00207459008985960.

    Article  CAS  Google Scholar 

  209. Chiou-Tan FY, Tuel SM, Johnson JC, Priebe MM, Hirsh DD, Strayer JR. Effect of mexiletine on spinal cord injury dysesthetic pain. Am J Phys Med Rehabil. 1996;75:84–7. https://doi.org/10.1097/00002060-199603000-00002.

    Article  CAS  PubMed  Google Scholar 

  210. Okada S, Kinoshita M, Fujioka T, Yoshimura M. Two cases of multiple sclerosis with painful tonic seizures and dysesthesia ameliorated by the administration of mexiletine. Jpn J Med. 1991;30:373–5. https://doi.org/10.2169/internalmedicine1962.30.373.

    Article  CAS  PubMed  Google Scholar 

  211. Park J, Chung M. Botulinum Toxin for Central Neuropathic Pain. Toxins. 2018;10:224. https://doi.org/10.3390/toxins10060224

  212. Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Witkin JM, editor. Pharmacol Rev. 2017;69:200–235. https://doi.org/10.1124/pr.116.012658

  213. Yelnik AP, Colle FM, Bonan IV, Vicaut E. Treatment of shoulder pain in spastic hemiplegia by reducing spasticity of the subscapular muscle: a randomised, double blind, placebo controlled study of botulinum toxin A. J Neurol Neurosurg Psychiatry. 2007;78:845–848. https://doi.org/10.1136/jnnp.2006.103341

  214. Marco E, Duarte E, Vila J, Tejero M, Guillen A, Boza R, et al. Is botulinum toxin type A effective in the treatment of spastic shoulder pain in patients after stroke? A double-blind randomized clinical trial. J Rehabil Med. 2007;39:440–447. https://doi.org/10.2340/16501977-0066

  215. Kong K-H, Neo J-J, Chua KS. A randomized controlled study of botulinum toxin A in the treatment of hemiplegic shoulder pain associated with spasticity. Clin Rehabil. 2007;21:28–35. https://doi.org/10.1177/0269215506072082

  216. Zeilig G, Rivel M, Weingarden H, Gaidoukov E, Defrin R. Evidence of a neuropathic origin in hemiplegic shoulder pain. Pain. 2013;154:959–960. https://doi.org/10.1016/j.pain.2013.03.012

  217. Roosink M, Renzenbrink GJ, Geurts ACH, IJzerman MJ. Towards a mechanism-based view on poststroke shoulder pain: Theoretical considerations and clinical implications. NRE. 2010;30:153–165. https://doi.org/10.3233/NRE-2012-0739

  218. Magrinelli F, Zanette G, Tamburin S. No evidence of a neuropathic origin in hemiplegic shoulder pain. Pain. 2013;154:958–959. https://doi.org/10.1016/j.pain.2013.03.010

  219. Jabbari B, Maher N, Difazio MP. Botulinum toxin A improved burning pain and allodynia in two patients with spinal cord pathology. Pain Med. 2003;4:206–10. https://doi.org/10.1046/j.1526-4637.2003.03013.x.

    Article  PubMed  Google Scholar 

  220. Han ZA, Song DH, Chung ME. Effect of subcutaneous injection of botulinum toxin A on spinal cord injury-associated neuropathic pain. Spinal Cord. 2014;52:S5-6. https://doi.org/10.1038/sc.2014.43.

    Article  PubMed  Google Scholar 

  221. Chun A, Levy I, Yang A, Delgado A, Tsai C-Y, Leung E, et al. Treatment of at-level spinal cord injury pain with botulinum toxin A. Spinal Cord Ser Cases. 2019;5:77. https://doi.org/10.1038/s41394-019-0221-9.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Han Z, Song DH, Oh H, Chung ME. Botulinum toxin type A for neuropathic pain in patients with spinal cord injury. Ann Neurol. 2016;79:569–78. https://doi.org/10.1002/ana.24605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Cameron MH, Bethoux F, Davis N, Frederick M. Botulinum Toxin for Symptomatic Therapy in Multiple Sclerosis. Curr Neurol Neurosci Rep. 2014;14:463. https://doi.org/10.1007/s11910-014-0463-7

  224. Zanghì A, Cimino S, Urzì D, Privitera S, Zagari F, Lanza G, et al. Pharmacotherapeutic management of lower urinary tract symptoms in Multiple Sclerosis patients. Expert Opinion on Pharmacotherapy. 2020;21:1449–54. https://doi.org/10.1080/14656566.2020.1767068

  225. Dressler D, Bhidayasiri R, Bohlega S, Chahidi A, Chung TM, Ebke M, et al. Botulinum toxin therapy for treatment of spasticity in multiple sclerosis: review and recommendations of the IAB-Interdisciplinary Working Group for Movement Disorders task force. J Neurol. 2017;264:112–120. https://doi.org/10.1007/s00415-016-8304-z

  226. Kopsky DJ, Liebregts R, Keppel Hesselink JM. Central neuropathic pain in a patient with multiple sclerosis treated successfully with topical amitriptyline. Case Rep Med. 2012;2012:1–3. https://doi.org/10.1155/2012/471835.

    Article  Google Scholar 

  227. Crul TC, Stolwijk-Swüste JM, Kopsky DJ, Visser-Meily JMA, Post MWM. Neuropathic pain in spinal cord injury: topical analgesics as a possible treatment. Spinal Cord Ser Cases. 2020;6:73. https://doi.org/10.1038/s41394-020-00321-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Sanford M. Intrathecal ziconotide: a review of its use in patients with chronic pain refractory to other systemic or intrathecal analgesics. CNS Drugs. 2013;27:989–1002. https://doi.org/10.1007/s40263-013-0107-5.

    Article  CAS  PubMed  Google Scholar 

  229. Banik RK, Engle MP. Ziconotide for management of cancer pain refractory to pharmacotherapy: an update. Pain Med. 2020;21:3253–9.

    Article  Google Scholar 

  230. Brinzeu A, Berthiller J, Caillet J, Staquet H, Mertens P. Ziconotide for spinal cord injury-related pain. Eur J Pain. 2019;23:1688–700. https://doi.org/10.1002/ejp.1445.

    Article  CAS  PubMed  Google Scholar 

  231. Barrett W, Buxhoeveden M, Dhillon S. Ketamine: a versatile tool for anesthesia and analgesia. Curr Opin Anaesthesiol. 2020;33:633–8. https://doi.org/10.1097/ACO.0000000000000916.

    Article  PubMed  Google Scholar 

  232. Vranken JH, Dijkgraaf MGW, Kruis MR, van Dasselaar NT, van der Vegt MH. Iontophoretic administration of S(+)-ketamine in patients with intractable central pain: a placebo-controlled trial. Pain. 2005;118:224–31. https://doi.org/10.1016/j.pain.2005.08.020.

    Article  CAS  PubMed  Google Scholar 

  233. Angstadt R, Esperti S, Mangano A, Meyer S. Palliative ketamine: the use of ketamine in central post-stroke pain syndrome: a case report. Ann Palliat Med. 2021;10:6974–8. https://doi.org/10.21037/apm-20-972.

    Article  PubMed  Google Scholar 

  234. Vick PG, Lamer TJ. Treatment of central post-stroke pain with oral ketamine. Pain. 2001;92:311–3. https://doi.org/10.1016/S0304-3959(00)00488-7.

    Article  CAS  PubMed  Google Scholar 

  235. Amr YM. Epidural ketamine in post spinal cord injury-related chronic pain. Anesth Essays Res. 2011;5:83–6. https://doi.org/10.4103/0259-1162.84196.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Amr YM. Multi-day low dose ketamine infusion as adjuvant to oral gabapentin in spinal cord injury related chronic pain: a prospective, randomized, double blind trial. Pain Phys. 2010;3(13):245–9. https://doi.org/10.36076/ppj.2010/13/245.

    Article  Google Scholar 

  237. Pellicane AJ, Millis SR. Efficacy of methylprednisolone versus other pharmacologic interventions for the treatment of central post-stroke pain: a retrospective analysis. J Pain Res. 2013;6:557–63. https://doi.org/10.2147/JPR.S46530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Xu X-M, Luo H, Rong B, Zheng X-M, Wang F, Zhang S-J, et al. Nonpharmacological therapies for central poststroke pain: a systematic review. Medicine. 2020;99: e22611. https://doi.org/10.1097/MD.0000000000022611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–99. https://doi.org/10.1016/j.neuron.2007.06.026.

    Article  CAS  PubMed  Google Scholar 

  240. Ramger BC, Bader KA, Davies SP, Stewart DA, Ledbetter LS, Simon CB, et al. Effects of non-invasive brain stimulation on clinical pain intensity and experimental pain sensitivity among individuals with central post-stroke pain: a systematic review. J Pain Res. 2019;12:3319–29. https://doi.org/10.2147/JPR.S216081.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Zhang X, Hu Y, Tao W, Zhu H, Xiao D, Li Y. The effect of motor cortex stimulation on central poststroke pain in a series of 16 patients with a mean follow-up of 28 months: the effect and outcome predictors of MCS. Neuromodulation. 2017;20:492–6. https://doi.org/10.1111/ner.12547.

    Article  PubMed  Google Scholar 

  242. Liu Q, Zhong Q, Tang G, Ye L. Ultrasound-guided stellate ganglion block for central post-stroke pain: a case report and review. J Pain Res. 2020;13:461–4. https://doi.org/10.2147/JPR.S236812.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Liao C, Yang M, Liu P, Zhong W, Zhang W. Thalamic pain alleviated by stellate ganglion block: a case report. Medicine. 2017;96: e6058. https://doi.org/10.1097/MD.0000000000006058.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Bundy DT, Souders L, Baranyai K, Leonard L, Schalk G, Coker R, et al. Contralesional brain-computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors. Stroke. 2017;48:1908–15. https://doi.org/10.1161/STROKEAHA.116.016304.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Boldt I, Eriks-Hoogland I, Brinkhof MW, de Bie R, Joggi D, von Elm E. Non-pharmacological interventions for chronic pain in people with spinal cord injury. Cochrane Database Syst Rev. 2014;11: CD009177. https://doi.org/10.1002/14651858.CD009177.pub2.

    Article  Google Scholar 

  246. Tator CH, Minassian K, Mushahwar VK. Spinal cord stimulation. Handbook of Clinical Neurology. Elsevier; 2012. pp. 283–296. https://doi.org/10.1016/B978-0-444-52137-8.00018-8

  247. Karri J, Li S, Zhang L, Chen Y-T, Stampas A, Li S. Neuropathic pain modulation after spinal cord injury by breathing-controlled electrical stimulation (BreEStim) is associated with restoration of autonomic dysfunction. J Pain Res. 2018;11:2331–41. https://doi.org/10.2147/JPR.S174475.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Heutink M, Post MWM, Bongers-Janssen HMH, Dijkstra CA, Snoek GJ, Spijkerman DCM, et al. The CONECSI trial: results of a randomized controlled trial of a multidisciplinary cognitive behavioral program for coping with chronic neuropathic pain after spinal cord injury. Pain. 2012;153:120–8. https://doi.org/10.1016/j.pain.2011.09.029.

    Article  PubMed  Google Scholar 

  249. Zucchella C, Mantovani E, De Icco R, Tassorelli C, Sandrini G, Tamburin S. Non-invasive brain and spinal stimulation for pain and related symptoms in multiple sclerosis: a systematic review. Front Neurosci. 2020;14: 547069. https://doi.org/10.3389/fnins.2020.547069.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Subramonian A, Farrah K. Brivaracetam versus levetiracetam for epilepsy: a review of comparative clinical safety. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health. 2020. http://www.ncbi.nlm.nih.gov/books/NBK567269/. Accessed 22 Mar 2022

  251. Avila-Martin G, Galan-Arriero I, Ferrer-Donato A, Busquets X, Gomez-Soriano J, Escribá PV, et al. Oral 2-hydroxyoleic acid inhibits reflex hypersensitivity and open-field-induced anxiety after spared nerve injury. Eur J Pain. 2015;19:111–22. https://doi.org/10.1002/ejp.528.

    Article  CAS  PubMed  Google Scholar 

  252. Houtchens MK, Richert JR, Sami A, Rose JW. Open label gabapentin treatment for pain in multiple sclerosis. Mult Scler. 1997;3:250–3. https://doi.org/10.1177/135245859700300407.

    Article  CAS  PubMed  Google Scholar 

  253. Cianchetti C, Zuddas A, Randazzo AP, Perra L, Marrosu MG. Lamotrigine adjunctive therapy in painful phenomena in MS: preliminary observations. Neurology. 1999;53:433. https://doi.org/10.1212/WNL.53.2.433.

    Article  CAS  PubMed  Google Scholar 

  254. Turri M, Teatini F, Donato F, Zanette G, Tugnoli V, Deotto L, et al. Pain modulation after oromucosal cannabinoid spray (SATIVEX®) in patients with multiple sclerosis: a study with quantitative sensory testing and laser-evoked potentials. Medicines. 2018;5:59. https://doi.org/10.3390/medicines5030059.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Haroutounian.

Ethics declarations

Funding

No funding was received for preparation of this article.

Conflicts of Interest/Competing Interests

SH has received research support from Disarm Therapeutics, and personal fees from Medoc Ltd, Rafa Laboratories, and Vertex Pharmaceuticals, outside the scope of this paper. KNG and RC have no conflicts of interest to report.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

KNG, RC, and SH conceptualized the manuscript. KNG and RC performed the literature search and composed the first draft of the manuscript. KNG created the tables and figures. KNG, RC, and SH revised the manuscript, tables, and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurba, K.N., Chaudhry, R. & Haroutounian, S. Central Neuropathic Pain Syndromes: Current and Emerging Pharmacological Strategies. CNS Drugs 36, 483–516 (2022). https://doi.org/10.1007/s40263-022-00914-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-022-00914-4

Navigation