Skip to main content
Log in

Toll-Like Receptor 2-Mediated Glial Cell Activation in a Mouse Model of Cuprizone-Induced Demyelination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system that is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation. The factors triggering gliosis and demyelination are currently not well characterized. New findings suggest an important role of the innate immune response in the initiation and progression of active demyelinating lesions. Especially during progressive disease, aberrant glia activation rather than the invasion of peripheral immune cells is accountable for progressive neuronal injury. The innate immune response can be induced by pathogen-associated or danger-associated molecular patterns, which are identified by pattern recognition receptors (PRRs), including the Toll-like receptors (TLRs). In this study, we used the cuprizone model in mice to investigate the expression of TLR2 during the course of cuprizone-induced demyelination. In addition, we used TLR2-deficient mice to analyze the functional role of TLR2 activation during cuprizone-induced demyelination and reactive gliosis. We show a significantly increased expression of TLR2 in the corpus callosum and hippocampus of cuprizone-intoxicated mice. The absence of receptor signaling in TLR2-deficient mice resulted in less severe reactive astrogliosis in the corpus callosum and cortex. In addition, microglia activation was ameliorated in the corpus callosum of TLR2-deficient mice, but augmented in the cortex compared to wild-type littermates. Extent of demyelination and loss of mature oligodendrocytes was comparable in both genotypes. These results suggest that the TLR2 orchestrates glia activation during gray and white matter demyelination in the presence of an intact blood-brain barrier. Future studies now have to address the underlying mechanisms of the region-specific TLR2-mediated glia activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CC:

Corpus callosum

CX:

Cortex

TLR:

Toll-like receptor

GFAP:

Glial fibrillary acidic protein

Hc:

Hippocampus

IBA-1:

Ionized calcium-binding adaptor molecule 1

Itgam:

Integrin alpha M

KO:

Knock out

PLP:

Proteolipid protein

WT:

Wild-type

References

  1. Kipp M, van der Valk P, Amor S (2012) Pathology of multiple sclerosis. CNS Neurol Disord Drug Targets 11(5):506–517. https://doi.org/10.2174/187152712801661248

    Article  PubMed  CAS  Google Scholar 

  2. Kipp M, Nyamoya S, Hochstrasser T, Amor S (2017) Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol 27(2):123–137. https://doi.org/10.1111/bpa.12454

    Article  PubMed  Google Scholar 

  3. Kutzelnigg A, Lassmann H (2014) Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb Clin Neurol 122:15–58. https://doi.org/10.1016/b978-0-444-52001-2.00002-9

    Article  PubMed  Google Scholar 

  4. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162(1):1–11. https://doi.org/10.1111/j.1365-2249.2010.04143.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. van der Valk P, Amor S (2009) Preactive lesions in multiple sclerosis. Curr Opin Neurol 22(3):207–213. https://doi.org/10.1097/WCO.0b013e32832b4c76

    Article  PubMed  Google Scholar 

  6. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55(4):458–468. https://doi.org/10.1002/ana.20016

    Article  PubMed  Google Scholar 

  7. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364(9451):2106–2112. https://doi.org/10.1016/S0140-6736(04)17551-X

    Article  PubMed  CAS  Google Scholar 

  8. Lassmann H (2007) New concepts on progressive multiple sclerosis. Current neurology and neuroscience reports 7(3):239–244. https://doi.org/10.1007/s11910-007-0036-0

    Article  PubMed  Google Scholar 

  9. Hernandez-Pedro NY, Espinosa-Ramirez G, de la Cruz VP, Pineda B, Sotelo J (2013) Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol 2013:413465. https://doi.org/10.1155/2013/413465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Barry A, Cronin O, Ryan AM, Sweeney B, Yap SM, O’Toole O, Allen AP, Clarke G et al (2016) Impact of exercise on innate immunity in multiple sclerosis progression and symptomatology. Front Physiol 7:194. https://doi.org/10.3389/fphys.2016.00194

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci 121(9):367–387. https://doi.org/10.1042/CS20110164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Konat GW, Kielian T, Marriott I (2006) The role of Toll-like receptors in CNS response to microbial challenge. J Neurochem 99(1):1–12. https://doi.org/10.1111/j.1471-4159.2006.04076.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Brandenburg LO, Jansen S, Albrecht LJ, Merres J, Gerber J, Pufe T, Tauber SC (2013) CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol 255(1–2):18–31. https://doi.org/10.1016/j.jneuroim.2012.10.012

    Article  PubMed  CAS  Google Scholar 

  14. Miranda-Hernandez S, Baxter AG (2013) Role of toll-like receptors in multiple sclerosis. Am J Clin Exp Immunol 2(1):75–93

    PubMed  PubMed Central  Google Scholar 

  15. Hossain MJ, Tanasescu R, Gran B (2017) Innate immune regulation of autoimmunity in multiple sclerosis: focus on the role of Toll-like receptor 2. J Neuroimmunol 304:11–20. https://doi.org/10.1016/j.jneuroim.2016.12.004

    Article  PubMed  CAS  Google Scholar 

  16. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122(4):1164–1171. https://doi.org/10.1172/JCI58644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58(3):253–263. https://doi.org/10.1002/glia.20928

    Article  PubMed  Google Scholar 

  18. Mariani MM, Kielian T (2009) Microglia in infectious diseases of the central nervous system. J NeuroImmune Pharmacol 4(4):448–461. https://doi.org/10.1007/s11481-009-9170-6

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zekki H, Feinstein DL, Rivest S (2002) The clinical course of experimental autoimmune encephalomyelitis is associated with a profound and sustained transcriptional activation of the genes encoding toll-like receptor 2 and CD14 in the mouse CNS. Brain Pathol 12(3):308–319

    Article  PubMed  CAS  Google Scholar 

  20. Farez MF, Quintana FJ, Gandhi R, Izquierdo G, Lucas M, Weiner HL (2009) Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat Immunol 10(9):958–964. https://doi.org/10.1038/ni.1775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736. https://doi.org/10.1007/s00401-009-0591-3

    Article  PubMed  Google Scholar 

  22. Skripuletz T, Gudi V, Hackstette D, Stangel M (2011) De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol 26(12):1585–1597. https://doi.org/10.14670/hh-26.1585

    Article  PubMed  CAS  Google Scholar 

  23. Draheim T, Liessem A, Scheld M, Wilms F, Weissflog M, Denecke B, Kensler TW, Zendedel A et al (2016) Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia 64(12):2219–2230. https://doi.org/10.1002/glia.23058

    Article  PubMed  CAS  Google Scholar 

  24. Janssen K, Rickert M, Clarner T, Beyer C, Kipp M (2016) Absence of CCL2 and CCL3 ameliorates central nervous system grey matter but not white matter demyelination in the presence of an intact blood-brain barrier. Mol Neurobiol 53(3):1551–1564. https://doi.org/10.1007/s12035-015-9113-6

    Article  PubMed  CAS  Google Scholar 

  25. Grosse-Veldmann R, Becker B, Amor S, van der Valk P, Beyer C, Kipp M (2016) Lesion expansion in experimental demyelination animal models and multiple sclerosis lesions. Mol Neurobiol 53(7):4905–4917. https://doi.org/10.1007/s12035-015-9420-y

    Article  PubMed  CAS  Google Scholar 

  26. Wagenknecht N, Becker B, Scheld M, Beyer C, Clarner T, Hochstrasser T, Kipp M (2016) Thalamus degeneration and inflammation in two distinct multiple sclerosis animal models. J Mol Neurosci 60(1):102–114. https://doi.org/10.1007/s12031-016-0790-z

    Article  PubMed  CAS  Google Scholar 

  27. Zendedel A, Beyer C, Kipp M (2013) Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci 51(2):567–572. https://doi.org/10.1007/s12031-013-0026-4

    Article  PubMed  CAS  Google Scholar 

  28. Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, Saint Girons I, Haake DA, Godowski PJ et al (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2(4):346–352. https://doi.org/10.1038/86354

    Article  PubMed  CAS  Google Scholar 

  29. Reiling N, Holscher C, Fehrenbach A, Kroger S, Kirschning CJ, Goyert S, Ehlers S (2002) Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169(7):3480–3484. https://doi.org/10.4049/jimmunol.169.7.3480

    Article  PubMed  CAS  Google Scholar 

  30. Buschmann JP, Berger K, Awad H, Clarner T, Beyer C, Kipp M (2012) Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci 48(1):66–76. https://doi.org/10.1007/s12031-012-9773-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Clarner T, Buschmann JP, Beyer C, Kipp M (2011) Glial amyloid precursor protein expression is restricted to astrocytes in an experimental toxic model of multiple sclerosis. J Mol Neurosci 43(3):268–274. https://doi.org/10.1007/s12031-010-9419-9

    Article  PubMed  CAS  Google Scholar 

  32. Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, Beyer C, Amor S et al (2012) Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia 60(10):1468–1480. https://doi.org/10.1002/glia.22367

    Article  PubMed  Google Scholar 

  33. Goldberg J, Clarner T, Beyer C, Kipp M (2015) Anatomical distribution of cuprizone-induced lesions in C57BL6 mice. J Mol Neurosci 57(2):166–175. https://doi.org/10.1007/s12031-015-0595-5

    Article  PubMed  CAS  Google Scholar 

  34. Hochstrasser T, Exner GL, Nyamoya S, Schmitz C, Kipp M (2017) Cuprizone-containing pellets are less potent to induce consistent demyelination in the corpus callosum of C57BL/6 mice. J Mol Neurosci 61(4):617–624. https://doi.org/10.1007/s12031-017-0903-3

    Article  PubMed  CAS  Google Scholar 

  35. Acs P, Kipp M, Norkute A, Johann S, Clarner T, Braun A, Berente Z, Komoly S et al (2009) 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57(8):807–814. https://doi.org/10.1002/glia.20806

    Article  PubMed  Google Scholar 

  36. Kipp M, Norkute A, Johann S, Lorenz L, Braun A, Hieble A, Gingele S, Pott F et al (2008) Brain-region-specific astroglial responses in vitro after LPS exposure. J Mol Neurosci 35(2):235–243. https://doi.org/10.1007/s12031-008-9057-7

    Article  PubMed  CAS  Google Scholar 

  37. Clarner T, Parabucki A, Beyer C, Kipp M (2011) Corticosteroids impair remyelination in the corpus callosum of cuprizone-treated mice. J Neuroendocrinol 23(7):601–611. https://doi.org/10.1111/j.1365-2826.2011.02140.x

    Article  PubMed  CAS  Google Scholar 

  38. Ruther BJ, Scheld M, Dreymueller D, Clarner T, Kress E, Brandenburg LO, Swartenbroekx T, Hoornaert C et al (2017) Combination of cuprizone and experimental autoimmune encephalomyelitis to study inflammatory brain lesion formation and progression. Glia 65(12):1900–1913. https://doi.org/10.1002/glia.23202

    Article  PubMed  Google Scholar 

  39. Becker B, Demirbas M, Johann S, Zendedel A, Beyer C, Clusmann H, Haas SJ, Wree A et al (2017) Effect of intrastriatal 6-OHDA lesions on extrastriatal brain structures in the mouse. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0637-9

  40. Zendedel A, Johann S, Mehrabi S, Joghataei MT, Hassanzadeh G, Kipp M, Beyer C (2016) Activation and regulation of NLRP3 inflammasome by intrathecal application of SDF-1a in a spinal cord injury model. Mol Neurobiol 53(5):3063–3075. https://doi.org/10.1007/s12035-015-9203-5

    Article  PubMed  CAS  Google Scholar 

  41. Albrecht LJ, Tauber SC, Merres J, Kress E, Stope MB, Jansen S, Pufe T, Brandenburg LO (2016) Lack of proinflammatory cytokine Interleukin-6 or tumor necrosis factor receptor-1 results in a failure of the innate immune response after bacterial meningitis. Mediat Inflamm 2016:7678542. https://doi.org/10.1155/2016/7678542

    Article  CAS  Google Scholar 

  42. Oldekamp S, Pscheidl S, Kress E, Soehnlein O, Jansen S, Pufe T, Wang JM, Tauber SC et al (2014) Lack of formyl peptide receptor 1 and 2 leads to more severe inflammation and higher mortality in mice with of pneumococcal meningitis. Immunology 143(3):447–461. https://doi.org/10.1111/imm.12324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Skripuletz T, Lindner M, Kotsiari A, Garde N, Fokuhl J, Linsmeier F, Trebst C, Stangel M (2008) Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 172(4):1053–1061. https://doi.org/10.2353/ajpath.2008.070850

    Article  PubMed  PubMed Central  Google Scholar 

  44. Scheld M, Ruther BJ, Grosse-Veldmann R, Ohl K, Tenbrock K, Dreymuller D, Fallier-Becker P, Zendedel A et al (2016) Neurodegeneration triggers peripheral immune cell recruitment into the forebrain. J Neurosci 36(4):1410–1415. https://doi.org/10.1523/JNEUROSCI.2456-15.2016

    Article  PubMed  CAS  Google Scholar 

  45. Hiremath MM, Chen VS, Suzuki K, Ting JP, Matsushima GK (2008) MHC class II exacerbates demyelination in vivo independently of T cells. J Neuroimmunol 203(1):23–32. https://doi.org/10.1016/j.jneuroim.2008.06.034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pasquini LA, Calatayud CA, Bertone Una AL, Millet V, Pasquini JM, Soto EF (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32(2):279–292. https://doi.org/10.1007/s11064-006-9165-0

    Article  PubMed  CAS  Google Scholar 

  47. van der Star BJ, Vogel DY, Kipp M, Puentes F, Baker D, Amor S (2012) In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets 11(5):570–588. https://doi.org/10.2174/187152712801661284

    Article  PubMed  Google Scholar 

  48. Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B et al (2015) CXCL10 triggers early microglial activation in the cuprizone model. J Immunol (Baltimore, Md : 1950) 194(7):3400–3413. https://doi.org/10.4049/jimmunol.1401459

    Article  CAS  Google Scholar 

  49. Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, Berger K, Kipp M et al (2013) Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain J Neurol 136(Pt 1):147–167. https://doi.org/10.1093/brain/aws262

    Article  Google Scholar 

  50. Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A 107(25):11555–11560. https://doi.org/10.1073/pnas.1006496107

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sakamoto Y, Boeda B, Etienne-Manneville S (2013) APC binds intermediate filaments and is required for their reorganization during cell migration. J Cell Biol 200(3):249–258. https://doi.org/10.1083/jcb.201206010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bihler K, Kress E, Esser S, Nyamoya S, Tauber SC, Clarner T, Stope MB, Pufe T et al (2017) Formyl peptide receptor 1-mediated glial cell activation in a mouse model of cuprizone-induced demyelination. J Mol Neurosci 62(2):232–243. https://doi.org/10.1007/s12031-017-0924-y

    Article  PubMed  CAS  Google Scholar 

  53. Sun Y, Chen H, Dai J, Zou H, Gao M, Wu H, Ming B, Lai L et al (2015) HMGB1 expression patterns during the progression of experimental autoimmune encephalomyelitis. J Neuroimmunol 280:29–35. https://doi.org/10.1016/j.jneuroim.2015.02.005

    Article  PubMed  CAS  Google Scholar 

  54. Sternberg Z, Sternberg D, Chichelli T, Drake A, Patel N, Kolb C, Chadha K, Yu J et al (2016) High-mobility group box 1 in multiple sclerosis. Immunol Res 64(2):385–391. https://doi.org/10.1007/s12026-015-8673-x

    Article  PubMed  CAS  Google Scholar 

  55. Andersson A, Covacu R, Sunnemark D, Danilov AI, Dal Bianco A, Khademi M, Wallstrom E, Lobell A et al (2008) Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol 84(5):1248–1255. https://doi.org/10.1189/jlb.1207844

    Article  PubMed  CAS  Google Scholar 

  56. Hossain MJ, Tanasescu R, Gran B (2015) TLR2: an innate immune checkpoint in multiple sclerosis. Oncotarget 6(34):35131–35132. https://doi.org/10.18632/oncotarget.6031

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bsibsi M, Peferoen LA, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, van Horssen J, Eggen BJ et al (2014) Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-gamma and alpha B-crystallin. Acta Neuropathol 128(2):215–229. https://doi.org/10.1007/s00401-014-1317-8

    Article  PubMed  CAS  Google Scholar 

  58. Bohland M, Kress E, Stope MB, Pufe T, Tauber SC, Brandenburg LO (2016) Lack of Toll-like receptor 2 results in higher mortality of bacterial meningitis by impaired host resistance. J Neuroimmunol 299:90–97. https://doi.org/10.1016/j.jneuroim.2016.09.003

    Article  PubMed  CAS  Google Scholar 

  59. Mayo L, Quintana FJ, Weiner HL (2012) The innate immune system in demyelinating disease. Immunol Rev 248(1):170–187. https://doi.org/10.1111/j.1600-065X.2012.01135.x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Susanne Echterhagen and Lian Shen for excellent technical assistance and Adib Zendedel for his help with animal experiments.

Funding

This study was supported by the Else Kröner-Fresenius-Stiftung (LOB) and START-Program of the RWTH Aachen University (LOB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Ove Brandenburg.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esser, S., Göpfrich, L., Bihler, K. et al. Toll-Like Receptor 2-Mediated Glial Cell Activation in a Mouse Model of Cuprizone-Induced Demyelination. Mol Neurobiol 55, 6237–6249 (2018). https://doi.org/10.1007/s12035-017-0838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0838-2

Keywords

Navigation