Skip to main content

Advertisement

Log in

The Neurotoxic Effect of Cuprizone on Oligodendrocytes Depends on the Presence of Pro-inflammatory Cytokines Secreted by Microglia

  • Original paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In order to further characterize the still unknown mechanism of cuprizone-induced demyelination, we investigated its effect on rat primary oligodendroglial cell cultures. Cell viability was not significantly affected by this treatment. However, when concentrations of IFNγ and/or TNFα having no deleterious effects per se on cell viability were added together with cuprizone, cell viability decreased significantly. In mitochondria isolated from cuprizone-treated glial cells, we observed a marked decrease in the activities of the various complexes of the respiratory chain, indicating a disruption of mitochondrial function. An enhancement in oxidant production was also observed in cuprizone and/or TNFα-treated oligodendroglial cells. In in vivo experiments, inhibition of microglial activation with minocycline prevented cuprizone-induced demyelination. Based on the above-mentioned results we suggest that these microglial cells appear to have a very active role in cuprizone-induced oligodendroglial cell death and demyelination, through the production and secretion of pro-inflammatory cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Blakemore WF (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol 1:413–426

    Article  PubMed  CAS  Google Scholar 

  2. Blakemore WF (1973) Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci 20:73–83

    Article  PubMed  CAS  Google Scholar 

  3. Morell P, Barrett CV, Mason JL, Toews AD, Hostettler JD, Knapp GW, Matsushima GK (1998). Gene expression in brain during cuprizone induced demyelination and remyelination. Mol Cell Neurosci 12:220–227

    Article  PubMed  CAS  Google Scholar 

  4. Suzuki K, Kikkawa Y (1969) Status spongiosus of CNS and hepatic changes induced by cuprizone (biscyclohexanone oxalyldihydrazone). Am J Pathol 54:307–325

    PubMed  CAS  Google Scholar 

  5. Hemm RD, Carlton WW, Welser JR (1971) Ultrastructural changes of cuprizone encephalopathy in mice. Toxicol Appl Pharmacol 18:869–882

    Article  PubMed  CAS  Google Scholar 

  6. Ludwin SK (1978) Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest 39:597–612

    PubMed  CAS  Google Scholar 

  7. Carleton WW (1967) Studies on the induction of hydrocephalus and spongy degeneration by cuprizone feeding and attempts to antidote the toxicity. Life Sci 6:11–19

    Article  Google Scholar 

  8. Carey EM, Freeman NM (1983) Biochemical changes in cuprizone induced spongiform encephalopathy. I. Changes in the activities of 2’,3’-cyclic nucleotide 3’-phosphohydrolase, oligodendroglial ceramide galactosyl transferase, and the hydrolysis of the alkenyl group of alkenyl, acyl-glycerophospholipids by plasmalogenase in different regions of the brain. Neurochem Res 6:1029–1044

    Article  Google Scholar 

  9. Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92:38–49

    Article  PubMed  CAS  Google Scholar 

  10. Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 10:119–130

    Article  PubMed  CAS  Google Scholar 

  11. Liu C, Li Wan Po A, Blumhardt LD (1998) “Summary measure” statistic for assessing the outcome of treatment trials in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 64:726–729

    Article  PubMed  CAS  Google Scholar 

  12. Kassiotis G, Kollias G (2001) TNF and receptors in organ-specific autoimmune disease: multi-layered functioning mirrored in animal models. J Clin Invest 107:1507–1508

    PubMed  CAS  Google Scholar 

  13. Buntinx M, Moreels M, Vandenabeele F, Lambrichts I, Raus J, Steels P, Stinissen P, Ameloot M (2004) Cytokine-induced cell death in human oligodendroglial cell lines: I. Synergistic effects of IFN-gamma and TNF-alpha on apoptosis. J Neurosci Res 76:834–845

    Article  PubMed  CAS  Google Scholar 

  14. Cammer W (2002) Protection of cultured oligodendrocytes against tumor necrosis factor-alpha by the antioxidants coenzymes Q (10) and N-acetyl cysteine. Brain Res Bull 58:587–592

    Article  PubMed  CAS  Google Scholar 

  15. Jurewicz A, Matysiak M, Tybor K, Selmaj K (2003) TNF-induced death of adult human oligodendrocytes is mediated by c-jun NH2-terminal kinase-3 Brain 126:1358–1370

    Article  PubMed  Google Scholar 

  16. Cammer W (1999) The neurotoxicant cuprizone retards the differentiation of oligodendrocytes in vitro. J Neurol Sci 168:116–120

    Article  PubMed  CAS  Google Scholar 

  17. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  PubMed  CAS  Google Scholar 

  18. Casaccia-Bonnefil P, Aibel L, Chao MV (1996) Central glial and neuronal populations display differential sensitivity to ceramide-dependent cell death. J Neurosci Res 43:382–389

    Article  PubMed  CAS  Google Scholar 

  19. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  20. Oberhammer F, Fritsch G, Schmied M, Pavelka M, Printz D, Purchio T, Lassmann H, Schulte-Hermann R (1993) Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J Cell Sci 104:317–326

    PubMed  CAS  Google Scholar 

  21. De Robertis EDF, Pellegrino de Iraldi A, Rodriguez de Lorez Arnaiz G, Salganicoff L (1962) Cholinergic and non-cholinergic nerve ending in rat brain. J Neurochem 9:23–35

    Article  Google Scholar 

  22. Morais Cardoso S, Pereira C, Resende Oliveira C (1999) Mitochondrial function is differentially affected upon oxidative stress. Free Radic Biol Med 26:3–13

    Article  Google Scholar 

  23. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116

    Article  PubMed  CAS  Google Scholar 

  24. Giuliani F, Fu SA, Metz LM, Yong VW (2005) Effective combination of minocycline and interferon-beta in a model of multiple sclerosis. J Neuroimmunol 165:83–91

    Article  PubMed  CAS  Google Scholar 

  25. Adamo AM, Paez PM, Escobar Cabrera OE, Wolfson M, Franco PG, Pasquini JM, Soto EF (2006) Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin. Exp Neurol 198:519–529

    Article  PubMed  CAS  Google Scholar 

  26. Arnett H, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP (2001) TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4:1116–1122

    Article  PubMed  CAS  Google Scholar 

  27. Selmaj K, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87:949–954

    Article  PubMed  CAS  Google Scholar 

  28. Vartanian T, Li Y, Zhao M, Stefansson K (1995) Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med 1:732–743

    PubMed  CAS  Google Scholar 

  29. D’Souza SD, Bonetti B, Balasingam V, Cashman NR, Barker PA, Troutt AB, Raine CS, Antel JP (1996) Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 184:2361–2370

    Article  PubMed  CAS  Google Scholar 

  30. Martino G, Consiglio A, Franciotta DM, Corti A, Filippi M, Vandenbroeck K, Sciacca FL, Comi G, Grimaldi LM (1997) Tumor necrosis factor alpha and its receptors in relapsing-remitting multiple sclerosis. J Neurol Sci 152:51–61

    Article  PubMed  CAS  Google Scholar 

  31. Debruyne J, Philippe J, Dereuck J, Willems A, Leroux-Roels G (1998) Relapse markers in multiple sclerosis: are in vitro cytokine production changes reflected by circulatory T-cell phenotype alterations? Mult Scler 4:193–197

    PubMed  CAS  Google Scholar 

  32. Vandevyver C, Motmans K, Stinissen P, Zhang J, Raus J (1998) Cytokine mRNA profile of myelin basic protein reactive T-Cell clones in patients with multiple sclerosis. Autoimmunity 28:77–89

    PubMed  CAS  Google Scholar 

  33. Merrill JE (1991) Effects of interleukin-1 and tumor necrosis factor-alpha on astrocytes, microglia, oligodendrocytes, and glial precursors in vitro. Dev Neurosci 13:130–137

    PubMed  CAS  Google Scholar 

  34. Giulian D, Ingeman JE (1988) Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 8:4707–4717

    PubMed  CAS  Google Scholar 

  35. Théry C, Mallat M (1993) Influence of interleukin-1 and tumor necrosis factor alpha on the growth of microglial cells in primary cultures of mouse cerebral cortex: involvement of colony-stimulating factor 1. Neurosci Lett 150:195–199

    Article  PubMed  Google Scholar 

  36. Dopp JM, Mackenzie-Graham A, Otero GC, Merrill JE (1997) Differential expression, cytokine modulation, and specific functions of type-1 and type-2 tumor necrosis factor receptors in rat glia. J Neuroimmunol 75:104–112

    Article  PubMed  CAS  Google Scholar 

  37. Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151:2132–2141

    PubMed  CAS  Google Scholar 

  38. Soliven B, Szuchet S (1995) Signal transduction pathways in oligodendrocytes: role of tumor necrosis factor-alpha. Int J Dev Neurosci 13:351–367

    Article  PubMed  CAS  Google Scholar 

  39. Selmaj KW, Raine CS (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23:339–346

    Article  PubMed  CAS  Google Scholar 

  40. Goossens V, Grooten J, De Vos K, Fiers W (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA 92:8115–8119

    Article  PubMed  CAS  Google Scholar 

  41. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  42. Chew LJ, King WC, Kennedy A, Gallo V (2005) Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia 52:127–143

    Article  PubMed  Google Scholar 

  43. Hisahara S, Shoji S, Okano H, Miura M (1997) ICE/CED-3 family executes oligodendrocyte apoptosis by tumor necrosis factor. J Neurochem 69:10–20

    Article  PubMed  CAS  Google Scholar 

  44. Hsu H, Shu H, Pan M, Goeddel D (1996) TRADDTRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308

    Article  PubMed  CAS  Google Scholar 

  45. Rothe M, Wong S, Henzel W, Goeddel D (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681–692

    Article  PubMed  CAS  Google Scholar 

  46. Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95:15769–15774

    Article  PubMed  CAS  Google Scholar 

  47. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500

    Article  PubMed  CAS  Google Scholar 

  48. Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125:1297–1308

    Article  PubMed  Google Scholar 

  49. Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J (2003) Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 53:731–742

    Article  PubMed  CAS  Google Scholar 

  50. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801

    Article  PubMed  CAS  Google Scholar 

  51. Zhu S, Stavrovskaya IG, Drozda M, Kim BYS, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417:74–78

    Article  PubMed  CAS  Google Scholar 

  52. Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E, Ferrante RJ, Kristal BS, Friedlander RM (2003) Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci USA 100:10483–10487

    Article  PubMed  CAS  Google Scholar 

  53. Fan LW, Pang Y, Lin S, Tien LT, Ma T, Rhodes PG, Cai Z (2005) Minocycline reduces lipopolysaccharide induced neurological dysfunctions and brain injury in the neonatal rat. J Neurosci Res 82:71–82

    Article  PubMed  CAS  Google Scholar 

  54. Cai Z, Lin S, Fan LW Pang Y, Rhodes PG (2006) Minocycline alleviates hypoxic-ischemic injury to developing oligodendrocytes in the neonatal rat brain. Neuroscience 137:425–435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Contract grant sponsor: Universidad de Buenos Aires B114 and Agencia Nacional de Promoción de Ciencia y Tecnología (PICT 12282). The authors wish to express their gratitude to Dra. Laura Pardo from FUNDALEU, for her help with the flow cytometry data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Soto.

Additional information

This work is dedicated with sincere friendship to Celia and Tony Campagnoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquini, L.A., Calatayud, C.A., Bertone Uña, A.L. et al. The Neurotoxic Effect of Cuprizone on Oligodendrocytes Depends on the Presence of Pro-inflammatory Cytokines Secreted by Microglia. Neurochem Res 32, 279–292 (2007). https://doi.org/10.1007/s11064-006-9165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9165-0

Keywords

Navigation