Skip to main content

Advertisement

Log in

Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Activated microglia and macrophages play a key role in driving demyelination during multiple sclerosis (MS), but the factors responsible for their activation remain poorly understood. Here, we present evidence for a dual-trigger role of IFN-γ and alpha B-crystallin (HSPB5) in this context. In MS-affected brain tissue, accumulation of the molecular chaperone HSPB5 by stressed oligodendrocytes is a frequent event. We have shown before that this triggers a TLR2-mediated protective response in surrounding microglia, the molecular signature of which is widespread in normal-appearing brain tissue during MS. Here, we show that IFN-γ, which can be released by infiltrated T cells, changes the protective response of microglia and macrophages to HSPB5 into a robust pro-inflammatory classical response. Exposure of cultured microglia and macrophages to IFN-γ abrogated subsequent IL-10 induction by HSPB5, and strongly promoted HSPB5-triggered release of TNF-α, IL-6, IL-12, IL-1β and reactive oxygen and nitrogen species. In addition, high levels of CXCL9, CXCL10, CXL11, several guanylate-binding proteins and the ubiquitin-like protein FAT10 were induced by combined activation with IFN-γ and HSPB5. As immunohistochemical markers for microglia and macrophages exposed to both IFN-γ and HSPB5, these latter factors were found to be selectively expressed in inflammatory infiltrates in areas of demyelination during MS. In contrast, they were absent from activated microglia in normal-appearing brain tissue. Together, our data suggest that inflammatory demyelination during MS is selectively associated with IFN-γ-induced re-programming of an otherwise protective response of microglia and macrophages to the endogenous TLR2 agonist HSPB5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Androdias G, Reynolds R, Chanal M, Ritleng C, Confavreux C, Nataf S (2010) Meningeal T cells associate with diffuse axonal loss in multiple sclerosis spinal cords. Ann Neurol 68:465–476. doi:10.1002/ana.22054

    Article  PubMed  CAS  Google Scholar 

  2. Arac A, Brownell SE, Rothbard JB, Chen C, Ko RM, Pereira MP, Albers GW, Steinman L, Steinberg GK (2011) Systemic augmentation of alpha B-crystallin provides therapeutic benefit twelve hours post-stroke onset via immune modulation. Proc Natl Acad Sci USA 108:13287–13292. doi:10.1073/pnas.1107368108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Bajramovic JJ, Plomp AC, van der Goes A, Koevoets C, Newcombe J, Cuzner ML, van Noort JM (2000) Presentation of alpha B-crystallin to T cells in active multiple sclerosis lesions: an early event following inflammatory demyelination. J Immunol 164:4359–4366

    Article  PubMed  CAS  Google Scholar 

  4. Balashov KE, Rottman JB, Weiner HL, Hancock WW (1999) CCR5+ and CXCR3+ T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA 96:6873–6878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Blouin CM, Lamaze C (2013) Interferon gamma receptor: the beginning of the journey. Front Immunol 4:267

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bsibsi M, Holtman IR, Gerritsen WH, Eggen BJ, Boddeke E, van der Valk P, van Noort JM, Amor S (2013) Alpha B-crystallin induces an immune-regulatory and antiviral microglial response in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol 72:970–979. doi:10.1097/NEN.0b013e3182a776bf

    Article  PubMed  CAS  Google Scholar 

  7. Brewer AC, Mustafi SB, Murray TV, Rajasekaran NS, Benjamin IJ (2013) Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal 18:1114–1127. doi:10.1089/ars.2012.4914

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37:424–435

    Article  PubMed  CAS  Google Scholar 

  9. Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg JR, Steinman L (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294:1731–1735

    Article  PubMed  CAS  Google Scholar 

  10. Dharajiya N, Vaidya S, Sinha M, Luxon B, Boldogh I, Sur S (2009) Allergen challenge induces IFN-γ dependent GTPases in the lungs as part of a Th1 transcriptome response in a murine model of allergic asthma. PLoS One 4:e8172. doi:10.1371/journal.pone.0008172

    Article  PubMed  PubMed Central  Google Scholar 

  11. Edwards KR, Goyal J, Plavina T, Czerkowicz J, Goelz S, Ranger A, Cadavid D, Browning JL (2013) Feasibility of the use of combinatorial chemokine arrays to study blood and CSF in multiple sclerosis. PLoS One 8:e81007. doi:10.1371/journal.pone.0081007

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H (2012) NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135:886–899. doi:10.1093/brain/aws012

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fischer MT, Wimmer I, Höftberger R, Gerlach S, Haider L, Zrzavy T, Hametner S, Mahad D, Binder CJ, Krumbholz M, Bauer J, Bradl M, Lassmann H (2013) Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136:1799–1815. doi:10.1093/brain/awt110

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gardner C, Magliozzi R, Durrenberger PF, Howell OW, Rundle J, Reynolds R (2013) Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain 136:3596–3608. doi:10.1093/brain/awt279

    Article  PubMed  Google Scholar 

  15. Goldbaum O, Richter-Landsberg C (2001) Stress proteins in oligodendrocytes: differential effects of heat shock and oxidative stress. J Neurochem 78:1233–12342

    Article  PubMed  CAS  Google Scholar 

  16. Gong P, Canaan A, Wang B, Leventhal J, Snyder A, Nair V, Cohen CD, Kretzler M, D’Agati V, Weissman S, Ross MJ (2010) The ubiquitin-like protein FAT10 mediates NF-kappaB activation. J Am Soc Nephrol 21:316–326. doi:10.1681/ASN.2009050479

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Hagemann TL, Boelens WC, Wawrousek EF, Messing A (2009) Suppression of GFAP toxicity by alpha B-crystallin in mouse models of Alexander disease. Hum Mol Genet 18:1190–1199. doi:10.1093/hmg/ddp013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Haider L, Fischer MT, Frischer JM, Bauer J, Höftberger R, Botond G, Esterbauer H, Binder CJ, Witztum JL, Lassmann H (2011) Oxidative damage in multiple sclerosis lesions. Brain 134:1914–1924. doi:10.1093/brain/awr128

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Brück W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74:848–861. doi:10.1002/ana.23974

    Article  PubMed  CAS  Google Scholar 

  20. Herrero C, Hu X, Li WP, Samuels S, Sharif MN, Kotenko S, Ivashkiv LB (2003) Reprogramming of IL-10 activity and signaling by IFN-gamma. J Immunol 171:5034–5041

    Article  PubMed  CAS  Google Scholar 

  21. Hu X, Paik PK, Chen J, Yarilina A, Kockeritz L, Lu TT, Woodgett JR, Ivashkiv LB (2006) IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24:563–574

    Article  PubMed  CAS  Google Scholar 

  22. Hu X, Chakravarty SD, Ivashkiv LB (2008) Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol Rev 226:41–56. doi:10.1111/j.1600-065X.2008.00707.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Kagitani-Shimono K, Mohri I, Oda H, Ozono K, Suzuki K, Urade Y, Taniike M (2006) Lipocalin-type prostaglandin D synthase (beta-trace) is upregulated in alpha B-crystallin-positive oligodendrocytes and astrocytes in chronic multiple sclerosis. Neuropathol Appl Neurobiol 32:64–73

    Article  PubMed  CAS  Google Scholar 

  24. Kim BH, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD (2011) A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection. Science 332:717–721. doi:10.1126/science.1201711

    Article  PubMed  CAS  Google Scholar 

  25. Kim JY, Song SH, Kim HN, Kim DW, Sohn HJ, Lee EY, Cho SS, Seo JH (2012) Alpha B-crystallin is expressed in myelinating oligodendrocytes of the developing and adult avian retina. Neurochem Res 37:2135–2142. doi:10.1007/s11064-012-0835-9

    Article  PubMed  CAS  Google Scholar 

  26. Klopstein A, Santos-Nogueira E, Francos-Quijorna I, Redensek A, David S, Navarro X, López-Vales R (2012) Beneficial effects of αB-crystallin in spinal cord contusion injury. J Neurosci 32:14478–14488. doi:10.1523/JNEUROSCI.0923-12.2012

    Article  PubMed  CAS  Google Scholar 

  27. Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, Schwartz M (2013) IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136:3427–3440. doi:10.1093/brain/awt259

    Article  PubMed  Google Scholar 

  28. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    Article  PubMed  Google Scholar 

  29. Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8:647–656. doi:10.1038/nrneurol.2012.168

    Article  PubMed  CAS  Google Scholar 

  30. Li R, Rohatgi T, Hanck T, Reiser G (2009) Alpha A-crystallin and alpha B-crystallin, newly identified interaction proteins of protease-activated receptor-2, rescue astrocytes from C2-ceramide- and staurosporine-induced cell death. J Neurochem 110:1433–1444. doi:10.1111/j.1471-4159.2009.06226.x

    Article  PubMed  CAS  Google Scholar 

  31. Li T, Mo X, Jiang Z, He W, Lu W, Zhang H, J, Zeng L, Yang B, Xiao H, Hu Z (2012) Study of αB-crystallin expression in Gerbil BCAO model of transient global cerebral ischemia. Oxid Med Cell Longev 2012:945071. doi: 10.1155/2012/945071

  32. Masilamoni JG, Jesudason EP, Baben B, Jebaraj CE, Dhandayuthapani S, Jayakumar R (2006) Molecular chaperone alpha-crystallin prevents detrimental effects of neuroinflammation. Biochim Biophys Acta 1762:284–293

    Article  PubMed  CAS  Google Scholar 

  33. McGuinness MC, Powers JM, Bias WB, Schmeckpeper BJ, Segal AH, Gowda VC, Wesselingh SL, Berger J, Griffin DE, Smith KD (1997) Human leukocyte antigens and cytokine expression in cerebral inflammatory demyelinative lesions of X-linked adrenoleukodystrophy and multiple sclerosis. J Neuroimmunol 75:174–182

    Article  PubMed  CAS  Google Scholar 

  34. MacMicking JD (2012) Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat Rev Immunol 12:367–382. doi:10.1038/nri3210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR, Horvath S (2011) Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinform 12:322. doi:10.1186/1471-2105-12-322

    Article  CAS  Google Scholar 

  36. Ojha J, Karmegam RV, Masilamoni JG, Terry AV, Cashikar AG (2011) Behavioral defects in chaperone-deficient Alzheimer’s disease model mice. PLoS One 6:e16550. doi:10.1371/journal.pone.0016550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Olsson T (1992) Cytokines in neuroinflammatory disease: role of myelin autoreactive T cell production of interferon-gamma. J Neuroimmunol 40:211–218

    Article  PubMed  CAS  Google Scholar 

  38. Ousman SS, Tomooka BH, van Noort JM, Wawrousek EF, O’Connor KC, Hafler DA, Sobel RA, Robinson WH, Steinman (2007) Protective and therapeutic role for alpha B-crystallin in autoimmune demyelination. Nature 448:474–479

    Article  PubMed  CAS  Google Scholar 

  39. Pangratz-Fuehrer S, Kaur K, Ousman SS, Steinman L, Liao YJ (2011) Functional rescue of experimental ischemic optic neuropathy with αB-crystallin. Eye 25:809–817. doi:10.1038/eye.2011.42

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Park H, Park S, Jeon H, Song BW, Kim JB, Kim CS, Pak HN, Hwang KC, Lee MH, Chung JH, Joung B (2013) Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress. Toxicol Appl Pharmacol 266:267–275. doi:10.1016/j.taap.2012.10.013

    Article  PubMed  CAS  Google Scholar 

  41. Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neurol 10:217–224. doi:10.1038/nrneurol.2014.38

    Article  PubMed  CAS  Google Scholar 

  42. Qiao Y, Giannopoulou EG, Chan CH, Park SH, Gong S, Chen J, Hu X, Elemento O, Ivashkiv LB (2013) Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and Toll-like receptor signaling. Immunity 39:454–469. doi:10.1016/j.immuni.2013.08.009

    Article  PubMed  CAS  Google Scholar 

  43. Raasi S, Schmidtke G, de Giuli R, Groettrup M (1999) A ubiquitin-like protein which is synergistically inducible by interferon-γ and tumor necrosis factor-α. Eur J Immunol 29:4030–4036

    Article  PubMed  CAS  Google Scholar 

  44. Schliehe C, Bitzer A, van den Broek M, Groettrup M (2012) Stable antigen is most effective for eliciting CD8+ T-cell responses after DNA vaccination and infection with recombinant vaccinia virus in vivo. J Virol 86:9782–9793. doi:10.1128/JVI.00694-12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Schmidtke G, Aichem A, Groettrup M (2014) FAT10ylation as a signal for proteasomal degradation. Biochim Biophys Acta 1843:97–102. doi:10.1016/j.bbamcr.2013.01.009

    Article  PubMed  CAS  Google Scholar 

  46. Schuh C, Wimmer I, Hametner S, Haider L, Van Dam AM, Liblau RS, Smith KJ, Probert L, Binder CJ, Bauer J, Bradl M, Mahad D, Lassmann H (2014) Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models. Acta Neuropathol. doi:10.1007/s00401-014-1263-5

    PubMed  PubMed Central  Google Scholar 

  47. Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ, Zhou QB, Huang YY, Liu YJ, Wawrousek E, Chen T, Li SB, Xu M, Zhou JN, Hu G, Zhou JW (2013) Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature 494:90–94. doi:10.1038/nature11748

    Article  PubMed  CAS  Google Scholar 

  48. Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, MacMicking JD (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336:481–485. doi:10.1126/science.1217141

    Article  PubMed  CAS  Google Scholar 

  49. Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (2000) Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol 26:133–142

    Article  PubMed  CAS  Google Scholar 

  50. Sinclair C, Mirakhur M, Kirk J, Farrell M, McQuaid S (2005) Up-regulation of osteopontin and alpha B-crystallin in the normal-appearing white matter of multiple sclerosis: an immunohistochemical study utilizing tissue microarrays. Neuropathol Appl Neurobiol 31:292–303

    Article  PubMed  CAS  Google Scholar 

  51. Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sørensen TL, Trebst C, Kivisäkk P, Klaege KL, Majmudar A, Ravid R, Lassmann H, Olsen DB, Strieter RM, Ransohoff RM, Sellebjerg F (2002) Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J Neuroimmunol 127:59–68

    Article  PubMed  Google Scholar 

  53. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  PubMed  CAS  Google Scholar 

  54. Tajouri L, Mellick AS, Tourtellotte A, Nagra RM, Griffiths LR (2005) An examination of MS candidate genes identified as differentially regulated in multiple sclerosis plaque tissue, using absolute and comparative real-time Q-PCR analysis. Brain Res Brain Res Protoc 15:79–91

    Article  PubMed  CAS  Google Scholar 

  55. van der Valk P, Amor S (2009) Preactive lesions in multiple sclerosis. Curr Opin Neurol 22:207–213. doi:10.1097/WCO.0b013e32832b4c76

    PubMed  Google Scholar 

  56. van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, van der Valk P, de Vries HE (2008) Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med 45:1729–1737. doi:10.1016/j.freeradbiomed.2008.09.023

    Article  PubMed  Google Scholar 

  57. van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, Gerritsen W, Kooi EJ, Witte ME, Geurts JJ, de Vries HE, Peferoen-Baert R, van den Elsen PJ, van der Valk P, Amor S (2012) Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation 9:156. doi:10.1186/1742-2094-9-156

    Article  PubMed  PubMed Central  Google Scholar 

  58. van Noort JM, van Sechel AC, Bajramovic JJ, el Ouagmiri M, Polman CH, Lassmann H, Ravid R (1995) The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375:798–801

    Article  PubMed  Google Scholar 

  59. van Noort JM, Bsibsi M, Gerritsen WH, van der Valk P, Bajramovic JJ, Steinman L, Amor S (2010) Alpha B-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol 69:694–703. doi:10.1097/NEN.0b013e3181e4939c

    Article  PubMed  Google Scholar 

  60. van Noort JM, Bsibsi M, Nacken PJ, Gerritsen WH, Amor S, Holtman IR, Boddeke E, van Ark I, Leusink-Muis T, Folkerts G, Hennink WE, Amidi M (2013) Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heat-shock protein alpha B-crystallin-loaded PLGA microparticles. Biomaterials 34:831–840. doi:10.1016/j.biomaterials.2012.10.028

    Article  PubMed  Google Scholar 

  61. van Noort JM, Baker D, Amor S (2012) Mechanisms in the development of multiple sclerosis lesions: reconciling autoimmune and neurodegenerative factors. CNS Neurol Disord Drug Targets 11:556–569

    Article  PubMed  Google Scholar 

  62. Velotta JB, Kimura N, Chang SH, Chung J, Itoh S, Rothbard J, Yang PC, Steinman L, Robbins RC, Fischbein MP (2011) αB-crystallin improves murine cardiac function and attenuates apoptosis in human endothelial cells exposed to ischemia-reperfusion. Ann Thorac Surg 91:1907–1913. doi:10.1016/j.athoracsur.2011.02.072

    Article  PubMed  Google Scholar 

  63. Wang H, Brown J, Martin M (2011) Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. Cytokine 53:130–140. doi:10.1016/j.cyto.2010.10.009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Woodroofe MN, Cuzner ML (1993) Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 5:583–588

    Article  PubMed  CAS  Google Scholar 

  65. Wu N, Yu J, Chen S, Xu J, Ying X, Ye M, Li Y, Wang Y (2014) α-Crystallin protects RGC survival and inhibits microglial activation after optic nerve crush. Life Sci 94:17–23. doi:10.1016/j.lfs.2013.10.034

    Article  PubMed  CAS  Google Scholar 

  66. Yamamoto M, Okuyama M, Ma JS, Kimura T, Kamiyama N, Saiga H, Ohshima J, Sasai M, Kayama H, Okamoto T, Huang DC, Soldati-Favre D, Horie K, Takeda J, Takeda K (2012) A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity 37:302–313

    Article  PubMed  CAS  Google Scholar 

  67. Ying X, Zhang J, Wang Y, Wu N, Wang Y, Yew DT (2008) Alpha-crystallin protected axons from optic nerve degeneration after crushing in rats. J Mol Neurosci 35:253–258. doi:10.1007/s12031-007-9010-1

    Article  PubMed  CAS  Google Scholar 

  68. Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N (2008) Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 131:288–303

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the microarray core facility of the VU University Medical Centre, Amsterdam for their assistance in performing the microarray experiments. This study was sponsored by Delta Crystallon BV. We also acknowledge support from the Stichting MS research (Dutch MS society) for Dr. Peferoen (grant MS 10-726).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes M. van Noort.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bsibsi, M., Peferoen, L.A.N., Holtman, I.R. et al. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 128, 215–229 (2014). https://doi.org/10.1007/s00401-014-1317-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1317-8

Keywords

Navigation