Skip to main content
Log in

Brain-Region-Specific Astroglial Responses In Vitro After LPS Exposure

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Astroglia is well-known to be integrated in the complex regulation of neuroinflammation in the central nervous system. Astrocytes become activated and synthesize cytokines, chemokines, and prostanoids during degenerative and vulnerable processes and interact with other immune-competent cells. Degenerative disorders often occur in a brain-region-specific fashion suggesting differences in the activity and reactivity of innate immune cells. We have investigated the potency of lipopolysaccharides (LPS) to differently stimulate astrocytes from the cortex and midbrain. Astroglial cultures were prepared from Bagg albino/c mice and exposed to LPS. Astrocytes from both brain areas already differed in their capacity and profile of cytokine expression under basal unstimulated conditions. In response to LPS, we observed both a region-specific pattern of up-regulation of distinct cytokines and differences in the extent and time-course of activation. Our data demonstrate that astrocytes reveal a region-specific basal profile of cytokine expression and a selective area-specific regulation of cytokines upon LPS-induced inflammation. This makes astrocytes likely candidates to be responsible for region-specific incidence rates of neurological and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALS:

amyotrophic lateral sclerosis

as:

antisense

bFGF:

basic fibroblast growth factor

CD-40:

cluster of designation-40

CNS:

central nervous system

DNA:

deoxyribonucleic acid

EDTA:

ethylenediaminetetraacetic acid

GFAP:

glial cell line-derived neurotrophic factor

HPRT:

hypoxanthin-guanin-phosphoribosyl-transferase

IFN:

interferon

IL:

interleukin

LPS:

lipopolysaccharides

MCP-1:

monocyte chemo-attractant protein-1

M-CSF:

macrophage colony stimulating factor

MD-2:

myeloid differentiation protein-2

MIP-3α:

macrophage inflammatory protein-3α

MS:

multiple sclerosis

Myd88:

myeloid differentiation factor-88

OD:

optical density

PD:

Parkinson’s disease

PCR:

polymerase chain reaction

PGE2 :

prostaglandin E2

POS:

positive control

Neg:

negative control

RANTES:

regulated on activation, normal T-cell expressed and presumably secreted

RNA:

ribonucleic acid

RT:

reverse transcription

SDS:

sodiumdodecyl sulfate

s:

sense

TLR:

Toll-like receptor

TNFα:

tumor necrosis factor α

VEGF:

vascular epithelial growth factor

References

  • Allan, S. M., & Rothwell, N. J. (2001). Cytokines and acute neurodegeneration. Nature Reviews Neuroscience, 2, 734–744.

    Article  PubMed  CAS  Google Scholar 

  • Aloisi, F., Ria, F., & Adorini, L. (2000). Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunology Today, 21, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Bernaudin, M., Nouvelot, A., MacKenzie, E. T., & Petit, E. (1998). Selective neuronal vulnerability and specific glial reactions in hippocampal and neocortical organotypic cultures submitted to ischemia. Experimental Neurology, 150, 30–39.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi, P., Centonze, D., & Bernardi, G. (2000). Cellular factors controlling neuronal vulnerability in the brain: a lesson from the striatum. Neurology, 55, 1249–1255.

    PubMed  CAS  Google Scholar 

  • Carson, M. J., Doose, J. M., Melchior, B., Schmid, C. D., & Ploix, C. C. (2006). CNS immune privilege: hiding in plain sight. Immunology Review, 213, 48–65.

    Article  Google Scholar 

  • Chan, W. Y., Kohsaka, S., & Rezaie, P. (2007). The origin and cell lineage of microglia: new concepts. Brain Research Review, 53, 344–354.

    Article  CAS  Google Scholar 

  • Chung, I. Y., & Benveniste, E. N. (1990). Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. Journal of Immunology, 144, 2999–3007.

    CAS  Google Scholar 

  • Darlington, C. L. (2005). Astrocytes as targets for neuroprotective drugs. Current Opinion in Investigational Drugs, 6, 700–703.

    PubMed  CAS  Google Scholar 

  • Das, S., & Potter, H. (1995). Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by IL-1. Neuron, 14, 447–456.

    Article  PubMed  CAS  Google Scholar 

  • Dong, Y., & Benveniste, E. N. (2001). Immune function of astrocytes. Glia, 36, 180–190.

    Article  PubMed  CAS  Google Scholar 

  • Farina, C., Aloisi, F., & Meinl, E. (2007). Astrocytes are active players in cerebral innate immunity. Trends in Immunology, 28, 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Farina, C., Krumbholz, M., Giese, T., Hartmann, G., Aloisi, F., & Meinl, E. (2005). Preferential expression and function of Toll-like receptor 3 in human astrocytes. Journal of Neuroimmunology, 159, 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, L., Samuelsson, M., Jiang, Y., Ramberg, V., Figueroa, R., Hallberg, E., et al. (2007). Targeting cytokine expression in glial cells by cellular delivery of an NF-kappaB decoy. Journal of Molecular Neuroscience, 31, 209–219.

    PubMed  CAS  Google Scholar 

  • Franzen, R., Bouhy, D., & Schoenen, J. (2004). Nervous system injury: focus on the inflammatory cytokine ‘granulocyte-macrophage colony stimulating factor’. Neuroscience Letters, 361, 76–78.

    Article  PubMed  CAS  Google Scholar 

  • Gosselin, D., & Rivest, S. (2007). Role of IL-1 and TNF in the brain: twenty years of progress on a Dr. Jekyll/Mr. Hyde duality of the innate immune system. Brain Behavior and Immunity, 21, 281–289.

    Article  CAS  Google Scholar 

  • Hald, A., & Lotharius, J. (2005). Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Experimental Neurology, 193, 279–290.

    Article  PubMed  CAS  Google Scholar 

  • Han, B. C., Koh, S. B., Lee, E. Y., & Seong, Y. H. (2004). Regional difference of glutamate-induced swelling in cultured rat brain astrocytes. Life Sciences, 76, 573–583.

    Article  PubMed  CAS  Google Scholar 

  • Huh, G. Y., Roh, M. S., & Bae, H. R. (2001). Age-related regional difference of interleukin-1 expression in rat brain after lipopolysaccharide treatment. Journal of Korean Medical Science, 16, 103–107.

    PubMed  CAS  Google Scholar 

  • Jack, C. S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., et al. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. Journal of Immunology, 175, 4320–4330.

    CAS  Google Scholar 

  • Johann, S., Kampmann, E., Denecke, B., Arnold, S., Kipp, M., Mey, J., et al. (2008). Expression of enzymes involved in the prostanoid metabolism by cortical astrocytes after LPS-induced inflammation. Journal of Molecular Neuroscience, 34, 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Karakaya, S., Kipp, M., & Beyer, C. (2007). Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system. Journal of Neuroendocrinology, 19, 682–690.

    Article  PubMed  CAS  Google Scholar 

  • Kim, W. G., Mohney, R. P., Wilson, B., Jeohn, G. H., Liu, B., & Hong, J. S. (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. Journal of Neuroscience, 20, 6309–6316.

    PubMed  CAS  Google Scholar 

  • Kim, Y. S., & Joh, T. H. (2006). Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Experimental and Molecular Medicine, 38, 333–347.

    PubMed  CAS  Google Scholar 

  • Kipp, M., Karakaya, S., Pawlak, J., Araujo-Wright, G., Arnold, S., & Beyer, C. (2006). Estrogen and the development and protection of nigrostriatal dopaminergic neurons: concerted action of a multitude of signals, protective molecules, and growth factors. Frontiers in Neuroendocrinology, 27, 376–390.

    Article  PubMed  CAS  Google Scholar 

  • Kipp, M., Karakaya, S., Johann, S., Kampmann, E., Mey, J., & Beyer, C. (2007). Oestrogen and progesterone reduce lipopolysaccharide-induced expression of tumour necrosis factor-alpha and interleukin-18 in midbrain astrocytes. Journal of Neuroendocrinology, 19, 819–822.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa, R. M., & Segura-Aguilar, J. (2003). Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. A review. Neurotoxicity Research, 5, 375–383.

    Article  PubMed  Google Scholar 

  • Krasowska-Zoladek, A., Banaszewska, M., Kraszpulski, M., & Konat, G. W. (2007). Kinetics of inflammatory response of astrocytes induced by TLR 3 and TLR4 ligation. Journal of Neuroscience Research, 85, 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, S. M., Rothwell, N. J., & Gibson, R. M. (2006). The role of inflammation in CNS injury and disease. Britich Journal of Pharmacology, 147(Suppl 1), S232–S240.

    Article  CAS  Google Scholar 

  • Malipiero, U. V., Frei, K., & Fontana, A. (1990). Production of hemopoietic colony-stimulating factors by astrocytes. Journal of Immunology, 144, 3816–3821.

    CAS  Google Scholar 

  • Maragakis, N. J., & Rothstein, J. D. (2006). Mechanisms of disease: astrocytes in neurodegenerative disease. Natural Clinical Practice Neurology, 2, 679–689.

    Article  CAS  Google Scholar 

  • McGeer, P. L., & McGeer, E. G. (2008). Glial reactions in Parkinson’s disease. CNS Drugs, 21, 789–797.

    Article  Google Scholar 

  • McGuire, S. O., Ling, Z. D., Lipton, J. W., Sortwell, C. E., Collier, T. J., & Carvey, P. M. (2001). Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Experimental Neurology, 169, 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Mennicken, F., Maki, R., de Souza, E. B., & Quirion, R. (1999). Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends in Pharmacological Science, 20, 73–78.

    Article  CAS  Google Scholar 

  • Moisse, K., & Strong, M. J. (2006). Innate immunity in amyotrophic lateral sclerosis. Biochimica et Biophysica Acta, 1762, 1083–1093.

    PubMed  CAS  Google Scholar 

  • Mosley, R. L., Benner, E. J., Kadiu, I., Thomas, M., Boska, M. D., Hasan, K., et al. (2006). Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clinical Neuroscience Research, 6, 261–281.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu, T., & Sawada, M. (2005). Inflammatory process in Parkinson’s disease: role for cytokines. Current Pharmaceutical Design, 11, 999–1016.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, M. D., Julien, J. P., & Rivest, S. (2002). Innate immunity: the missing link in neuroprotection and neurodegeneration? Nature Reviews Neuroscience, 3, 216–227.

    Article  PubMed  CAS  Google Scholar 

  • Palsson-McDermott, E. M., & O'Neill, L. A. (2004). Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology, 113, 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Pawlak, J., & Beyer, C. (2005). Developmental expression of MNAR mRNA in the mouse brain. Cell and Tissue Research, 320, 545–549.

    Article  PubMed  CAS  Google Scholar 

  • Pawlak, J., Karolczak, M., Krust, A., Chambon, P., & Beyer, C. (2005). Estrogen receptor-alpha is associated with the plasma membrane of astrocytes and coupled to the MAP/Src-kinase pathway. Glia, 50, 270–275.

    Article  PubMed  Google Scholar 

  • Pistritto, G., Franzese, O., Pozzoli, G., Mancuso, C., Tringali, G., Preziosi, P., et al. (1999). Bacterial lipopolysaccharide increases prostaglandin production by rat astrocytes via inducible cyclooxygenase: evidence for the involvement of nuclear factor kappaB. Biochemical and Biophysical Research Communications, 263, 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S., et al. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 55, 453–462.

    Article  PubMed  Google Scholar 

  • Schneider, A., Kuhn, H. G., & Schabitz, W. R. (2005). A role for G-CSF (granulocyte-colony stimulating factor) in the central nervous system. Cell Cycle, 4, 1753–1757.

    PubMed  CAS  Google Scholar 

  • Skaper, S. D. (2007). The brain as a target for inflammatory processes and neuroprotective strategies. Annals of the New York Academy of Sciences, 1122, 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Suzumura, A., Takeuchi, H., Zhang, G., Kuno, R., & Mizuno, T. (2006). Roles of glia-derived cytokines on neuronal degeneration and regeneration. Annals of the New York Academy of Sciences, 1088, 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Takuma, K., Baba, A., & Matsuda, T. (2004). Astrocyte apoptosis: implications for neuroprotection. Progress Neurobiology, 72, 111–127.

    Article  CAS  Google Scholar 

  • Teismann, P., & Schulz, J. B. (2004). Cellular pathology of Parkinson's disease: astrocytes, microglia and inflammation. Cell and Tissue Research, 318, 149–161.

    Article  PubMed  Google Scholar 

  • Tzeng, S. F., Hsiao, H. Y., & Mak, O. T. (2005). Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Current Drug Targets Inflammation Allergy, 4, 335–340.

    Article  PubMed  CAS  Google Scholar 

  • van Noort, J. M. (2006). Human glial cell culture models of inflammation in the central nervous system. Drug Discovery Today, 11, 74–80.

    Article  PubMed  Google Scholar 

  • Vesce, S., Rossi, D., Brambilla, L., & Volterra, A. (2007). Glutamate release from astrocytes in physiological conditions and in neurodegenerative disorders characterized by neuroinflammation. International Review of Neurobiology, 82, 57–71.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. (2005). Investigational anti-inflammatory agents for the treatment of ischemic brain injury. Expert Opinion on Investigational Drugs, 14, 393–409.

    Article  PubMed  CAS  Google Scholar 

  • Williams, A., Piaton, G., & Lubetzki, C. (2007). Astrocytes—friends or foes in multiple sclerosis? Glia, 55, 1300–1312.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a START grant from the Medical Faculty of the RWTH Aachen (M.K.). We would like to thank U. Zahn and H. Helten for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cordian Beyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipp, M., Norkute, A., Johann, S. et al. Brain-Region-Specific Astroglial Responses In Vitro After LPS Exposure. J Mol Neurosci 35, 235–243 (2008). https://doi.org/10.1007/s12031-008-9057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9057-7

Keywords

Navigation