Skip to main content
Log in

The effect of the Y2O3 buffer layer on the microstructural and physical properties of melt-processed Y358 superconductor

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The Y3Ba5Cu8O18 (Y358) superconductors were produced using the Melt-Powder-Melt-Growth (MPMG) method. In the crystal growth process, Y2O3 powder was used as a substrate in both powder and tablet form. The first sample was produced without using any buffer layer, the second sample was produced with a powdered Y2O3 buffer layer, and the third sample was produced with a tablet-form Y2O3 buffer layer. The effect of the Y2O3 substrate on the structural and physical properties of the Y358 superconductor samples was investigated. Superconducting phases were observed in all samples of Y358 through XRD measurements, confirming their presence. Samples fabricated using the powder and tablet forms of the Y2O3 substrate had a better microstructure than the sample fabricated without a Y2O3 substrate. The highest critical current density (Jc) value was obtained at 77 K for the Y358 sample produced with a Y2O3 powder substrate, and the Jc value was calculated as 1.2 × 104 A cm–2 according to the Bean model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Hull J R 2000 Supercond. Sci. Technol. 13 R1

    Article  CAS  Google Scholar 

  2. Fujimoto H 2000 Supercond. Sci. Technol. 13 827

    Article  CAS  Google Scholar 

  3. Murakami M, Sakai N, Higuchi T and Yoo S I 1996 Supercond. Sci. Technol. 9 1015

    Article  CAS  Google Scholar 

  4. Nariki S, Sakai N and Murakami M 2002 Supercond. Sci. Technol. 15 648

    Article  CAS  Google Scholar 

  5. Ikuta H, Mase A, Mizutani U, Yanagi Y, Yoshikawa M, Itoh Y et al 1999 IEEE Trans. Appl. Supercond. 9 2219

    Article  Google Scholar 

  6. Tomita M and Murakami M 2003 Nature 421 517

    Article  CAS  Google Scholar 

  7. Namburi D K, Shi Y and Cardwell D A 2021 Supercond. Sci. Technol. 34 053002

    Google Scholar 

  8. Murakami M 1992 Supercond. Sci. Technol. 5 185

    Article  CAS  Google Scholar 

  9. Murakami M 2001 Physica C 357–360 751

    Article  Google Scholar 

  10. Bondarenko S I, Koverya V P, Krevsun A V and Link S I 2017 Low Temp. Phys. 43 1125

    Article  CAS  Google Scholar 

  11. Bernstein P and Noudem J 2020 Supercond. Sci. Technol. 33 1

    Article  Google Scholar 

  12. Aliabadi A, Farshchi Y A and Akhavan M 2009 Physica C 469 2012

    Article  CAS  Google Scholar 

  13. Gholipour S, Daadmehr V, Rezakhani A T, Khosroabadi H, Shahbaz Tehrani F and Hosseini Akbarnejad R 2012 J. Supercond. Nov. Magn. 25 2253

    Article  CAS  Google Scholar 

  14. Bolat S and Kutuk S 2012 J. Supercond. Nov. Magn. 25 731

    Article  CAS  Google Scholar 

  15. Basoğlu M, Düzgün I and Öztürk A 2021 J. Supercond. Nov. Magn. 34 1077

    Article  Google Scholar 

  16. Aydıner A, Çakır B, Seki H and Başoğlu M 2011 J. Supercond. Nov. Magn. 24 1397

    Article  Google Scholar 

  17. Çakır B and Aydıner A 2011 J. Supercond. Nov. Magn. 24 1577

    Article  Google Scholar 

  18. Zou X W, Wang Z H, Chen J L and Zhang H 2001 Physica C 356 31

    Article  CAS  Google Scholar 

  19. Licci F, Tissot P and Scheel H J 1989 J. Less Common Metals 150 201

    Article  Google Scholar 

  20. Udomsamuthirun P, Kruaehong T, Nikamjon T and Ratreng S 2010 J. Supercond. Nov. Magn. 23 1377

    Article  CAS  Google Scholar 

  21. Slimani Y, Hannachi E, Ben Salem M K, Ben Azzouz F and Ben Salem M 2018 Appl. Phys. A 124 1

    Article  CAS  Google Scholar 

  22. Yazıcı D, Erdem M and Özçelik B 2012 J. Supercond. Nov. Magn. 25 725

    Article  Google Scholar 

  23. Abou El Hassan A, Taoufik A, Labrag A, Bghour M, El Hamidi H and Ait Ahmed Y 2021 E3S Web of Conferences 229 01014

  24. Kutuk S, Bolat S, Terzioglu C and Altintas S P 2015 J. Alloy. Compd. 650 159

    Article  CAS  Google Scholar 

  25. Labrag A, Bghour M, Abou El Hassan A, El Hamidi H, Taoufik A and Laasri S 2020 Eur. Phys. J. Appl. Phys. 92 20601

    Article  CAS  Google Scholar 

  26. Aliabadi A, Akhavan-Farshchi Y and Akhavan M 2013 J. Supercond. Nov. Magn. 27 741

    Article  Google Scholar 

  27. Naik S P K, Miryala M, Koblischka M R, Koblischka-Veneva A, Oka T and Murakami M 2020 ACS Omega 5 6250

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Turkish Science and Technology Council-TUBITAK under Project Number 117F484.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MEHMET BAŞOĞLU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BAŞOĞLU, M., ÇAKIR, B., DUMAN, Ş. et al. The effect of the Y2O3 buffer layer on the microstructural and physical properties of melt-processed Y358 superconductor. Bull Mater Sci 46, 234 (2023). https://doi.org/10.1007/s12034-023-03076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03076-1

Keywords

Navigation