Skip to main content
Log in

Experimental and simulation study of charge transport mechanism in HfTiOx high-k gate dielectric on SiGe heterolayers

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Thin HfTiOx high-k gate dielectric (Ti ~26.6%) has been sputter-deposited on strained Si0.81Ge0.19 heterolayers. The energy band discontinuities and interface properties were studied using X-ray photoelectron spectroscopy. The conduction band offset, and valance band offset between HfTiOx and Si0.81Ge0.19 were found to be 1.34 and 2.52 eV, respectively. Further, temperature-dependent (300–500 K) current density–voltage measurements (J–V) were utilized to explore the underlying leakage current conduction mechanism. The conductive dislocation and emission barrier heights at the hetero-interface have also been extracted from temperature-dependent J–V measurement. The barrier height of 1.22 to 2.02 eV for Schottky emission and 0.76 to 1.26 eV for Poole–Frenkel emission were estimated at the hetero-interface. To better understand the conduction mechanism between the hetero-interface and temperature-dependent J–V, a calibrated TCAD simulation was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Golosov D A, Vilya N, Zavadski S M, Melnikov S N, Avramchuk A V, Grekhov M M et al 2019 Thin Solid Films 690 137517

  2. Khairnar A G and Mahajan A M 2013 Bull. Mater. Sci. 36 259

    Article  CAS  Google Scholar 

  3. Hlali S, Hizem N and Kalboussi A 2017 Bull. Mater. Sci. 40 1035

    Article  CAS  Google Scholar 

  4. Cheng B, Cao M, Rao R, Inani A, Voorde P, Vande Greene W M et al 1999 IEEE Trans. Electron Devices 46 1537

    Article  CAS  Google Scholar 

  5. Chang L, Yang K J, Yeo Y-C, Polishchuk I, King T-J and Hu C 2002 IEEE Trans. Electron Devices 49 2288

    Article  Google Scholar 

  6. Lee J J, Wang X, Bai W, Lu N and Kwong D-L 2003 IEEE Trans. Electron Devices 50 2067

    Article  CAS  Google Scholar 

  7. Mallik S, Mukherjee C, Mahata C, Hota M K, Das T, Dalapati G K et al 2012 Thin Solid Films 522 267

    Article  CAS  Google Scholar 

  8. Mallik S, Mahata C, Hota M K, Sarkar C K and Maiti C K 2011 Thin Solid Films 520 101

    Article  CAS  Google Scholar 

  9. Jin P, He G, Wang P H, Liu M, Xiao D Q, Gao J et al 2016 J. Alloys Compd. 688 925

    Article  CAS  Google Scholar 

  10. Jiang S S, He G, Fang Z B, Wang P H, Liu Y M, Lv J G et al 2018 J. Alloys Compd. 757 288

    Article  CAS  Google Scholar 

  11. Lu Q, Mu Y, Roberts J W, Althobaiti M, Dhanak V R, Wu J et al 2015 Materials (Basel) 8 8169

    Article  CAS  Google Scholar 

  12. Jin P, He G, Liu M, Xiao D Q, Gao J, Chen X F et al 2015 J. Alloys Compd. 649 128

    Article  CAS  Google Scholar 

  13. Huang J, Kirsch P D, Oh J, Lee S H, Price J, Majhi P et al 2008 in 2008 Symposium on VLSI Technology. IEEE pp 82

  14. Reiche M, Moutanabbir O, Hoentsche J, Gösele U M, Flachowsky S and Horstmann M 2010 Solid State Phenom. 156 61

    Google Scholar 

  15. Chu M, Sun Y, Aghoram U and Thompson S E 2009 Ann. Rev. Mater. Res. 39 203

    Article  CAS  Google Scholar 

  16. Lee M L, Fitzgerald E A, Bulsara M T, Currie M T and Lochtefeld A 2005 J. Appl. Phys. 97 1

    Article  Google Scholar 

  17. Karabulut A 2019 Bull. Mater. Sci. 42 5

    Article  Google Scholar 

  18. Kim S, Konar A, Hwang W-S, Lee J H, Lee J, Yang J et al 2012 Nat. Commun. 3 1

    Google Scholar 

  19. Kim Y, Ohmi S, Tsutsui K and Iwai H 2005 Jpn. J. Appl. Phys. 44 4032

    Article  CAS  Google Scholar 

  20. Kalita P K, Sarma B K and Das H L 2003 Bull. Mater. Sci. 26 613

    Article  CAS  Google Scholar 

  21. Bag A, Mallik S and Maiti C K 2014 J. Renew. Sustain. Energy 6 23110

    Article  Google Scholar 

  22. Hota M K, Bag A, Mallik S, Verma S and Maiti C K 2013 Graphene 1 45

    Article  Google Scholar 

  23. Miyazaki S 2002 Appl. Surf. Sci. 190 66

    Article  CAS  Google Scholar 

  24. Miyazaki S, Nishimura H, Fukuda M, Ley L and Ristein J 1997 Appl. Surf. Sci. 113 585

    Article  Google Scholar 

  25. Carey I V P H, Ren F, Hays D C, Gila B P, Pearton S J, Jang S et al 2017 J. Vac. Sci. Technol. B 35 41201

    Article  Google Scholar 

  26. Mallik S, Mahata C, Hota M K, Dalapati G K, Chi D Z, Sarkar C K et al 2010 Microelectron. Eng. 87 2234

    Article  CAS  Google Scholar 

  27. Lim E W and Ismail R 2015 Electronics 4 586

    Article  CAS  Google Scholar 

  28. Larson J M and Snyder J P 2006 IEEE Trans. Electron Devices 53 1048

    Article  CAS  Google Scholar 

  29. Huang P, Chen S, Zhao Y, Chen B, Gao B and Liu L 2016 IEEE Trans. Electron Devices 63 4295

    Article  CAS  Google Scholar 

  30. Zhang Q, Lu J, Zhai D, Xiao J, He M and Liu J 2020 IEEE Trans. Electron Devices 67 5033

    Article  CAS  Google Scholar 

  31. Chakraborty S, Bera M K, Dalapati G K, Paramanik D, Varma S and Bose P K 2006 Semicond. Sci. Technol. 21 467

    Article  CAS  Google Scholar 

  32. Maiti C K, Maikap S, Chatterjee S, Nandi S K and Samanta S K 2003 Solid State Electron. 47 1995

    Article  CAS  Google Scholar 

  33. Chen C-Y, Chou J-C and Chou H-T 2009 J. Electrochem. Soc. 156 H225

    Article  CAS  Google Scholar 

  34. Tomida K, Popovici M, Opsomer K, Menou N, Wang W-C and Delabie A 2010 in IOP conference series materials science and engineering (IOP Publishing) p 12023

  35. Mikhelashvili V, Lahav A, Brener R and Eisenstein G 2008 Microelectron. Eng. 85 1545

    Article  CAS  Google Scholar 

  36. Simmons J G 1967 Phys. Rev. 155 657

    Article  CAS  Google Scholar 

  37. Arslan E, Bütün S and Ozbay E 2009 Appl. Phys. Lett. 94 142106

  38. Haddara Y M, Ashburn P and Bagnall D M 2017 in Springer handbook of electronic and photonic materials (Springer) p 1

  39. Sze S M and Lee M K 2012 in Semiconductor devices: physics and technology (Wiley Global Education) p 549

  40. Zhu W J, Ma T-P, Tamagawa T and Kim J, Di Y 2002 IEEE Electron. Device Lett. 23 97

  41. Paskaleva A, Bauer A J, Lemberger M and Zürcher S 2004 J. Appl. Phys. 95 5583

    Article  CAS  Google Scholar 

  42. Feng L, Li N, Tian H and Liu Z 2014 J. Mater. Sci. 49 1875

    Article  CAS  Google Scholar 

  43. Cheong K Y, Moon J H, Kim H J, Bahng W and Kim N-K 2008 J. Appl. Phys. 103 84113

    Article  Google Scholar 

  44. Mishra M, Bhalla N K, Dash A and Gupta G 2019 Appl. Surf. Sci. 481 379

    Article  CAS  Google Scholar 

  45. Bag A, Moon D-B, Park K-H, Cho C-Y and Lee N-E 2019 Sens. Actuators B Chem. 296 126684

  46. Yu T, Jin C G, Dong Y J, Cao D, Zhuge L J and Wu X M 2013 Mater. Sci. Semicond. Process 16 1321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sandipan Mallik and Shrabani Guhathakurata would like to sincerely thank the Department of Science and Technology–Science and Engineering Research Board (DST-SERB), New Delhi, India, for providing research funding [Project no: ECR/2018/002477] under the DST-ECR scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Mallik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, P.P., Dash, A., Guhathakurata, S. et al. Experimental and simulation study of charge transport mechanism in HfTiOx high-k gate dielectric on SiGe heterolayers. Bull Mater Sci 45, 39 (2022). https://doi.org/10.1007/s12034-021-02622-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02622-z

Keywords

Navigation