Skip to main content
Log in

Barrier height modification in Au/Ti/n-GaAs devices with a \(\hbox {HfO}_{2}\) interfacial layer formed by atomic layer deposition

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy has been carried out to characterize the surface of the hafnia \((\hbox {HfO}_{2})\) thin films grown on n-GaAs wafer by atomic layer deposition, and the surface morphology of the \(\hbox {HfO}_{2}\) layer on GaAs has been analysed using atomic force microscopy. The barrier height (BH) values of 1.03 and 0.93 eV (300 K) for the Au/Ti/\(\hbox {HfO}_{2}\)/n-GaAs structures with 3- and 5-nm \(\hbox {HfO}_{2}\) interfacial layers, respectively, have been obtained from the IV characteristics of the devices, which are higher than the value of 0.77 eV (300 K) for the Au/Ti/n-GaAs diode fabricated by us. Therefore, it can be said that the \(\hbox {HfO}_{2}\) thin layer at the metal/GaAs interface can also be used for BH modification as a gate insulator in GaAs metal-oxide semiconductor (MOS) capacitors and MOS field-effect transistors. The ideality factor values have been calculated as 1.028 and 2.72 eV at 400 and 60 K; and as 1.04 and 2.58 eV at 400 and 60 K for the metal–insulating layer–semiconductor (MIS) devices with 3- and 5-nm interfacial layers, respectively. The bias-dependent BH values have been calculated for the devices by both Norde’s method and Gaussian distribution (GD) of BHs at each sample temperature. At 320 K, the \(\Phi \)\(_\mathrm{b}(V)\) value at 0.70 V for a 3-nm MIS diode is about 1.08 eV from the \(\Phi \)\(_\mathrm{b}(V)\) vs. V curve determined by the GD, and about 0.99 eV at 0.58 V for a 5-nm MIS diode. It has been seen that these bias-dependent BH values are in close agreement with those obtained by Norde’s method for the same bias voltage values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lee H K, Jyothi I, Janardhanam V, Shim K H, Yun H J, Lee S N et al 2016 Microelectron. Eng. 163 26

    Article  CAS  Google Scholar 

  2. Jyothi I, Janardhanam V, Kim J H, Yun H J, Jeong J C, Hong H et al 2016 J. Alloys Compd. 688 875

    Article  CAS  Google Scholar 

  3. Reddy M S P, Puneetha P, Reddy V R, Lee J H, Jeong S H and Park C 2016 J. Electron. Mater. 45 5655

    Article  CAS  Google Scholar 

  4. Kukli K, Ritala M, Sajavaara T, Keinonen J and Leskela M 2002 Thin Solid Films 416 72

    Article  CAS  Google Scholar 

  5. Aldemir D A, Kökce A and Özdemir A F 2017 Bull. Mater. Sci. 40 1435

    Article  CAS  Google Scholar 

  6. Rhoderick E H and Williams R H 1988 Metal-semiconductor contacts, 2nd edn. (Oxford, England: Oxford University Press)

    Google Scholar 

  7. Neamen D A 1992 Semiconductor physics and devices (Boston, USA: Irwin)

  8. Sze S M 1981 Physics of semiconductor devices, 2nd edn. (New York, USA: John Wiley & Sons)

    Google Scholar 

  9. Williams R H and Robinson G Y 1985 Physics and chemistry of III–V compound semiconductor interfaces (New York, USA: Plenum)

  10. Mönch W 1995 Semiconductor surfaces and interfaces, 2nd edn. (Berlin, Germany: Springer)

    Book  Google Scholar 

  11. Mao P, Wei Y, Lib H and Wang J 2017 Nano Energy 41 717

    Article  CAS  Google Scholar 

  12. Eglash S J, Newman N, Pan S, Mo D, Shenai K, Spicer W E et al 1987 J. Appl. Phys. 61 5159

    Article  CAS  Google Scholar 

  13. Kocyigit A, Orak I, Aydoğan Ş, Çaldıran Z and Turut A 2017 J. Mater. Sci.: Mater. Electron. 28 5880

    CAS  Google Scholar 

  14. Chin V W L, Green M A and Storey J W V 1993 Solid State Electron. 36 1107

    Article  CAS  Google Scholar 

  15. He G, Zhang L D, Liu M and Sun Z Q 2010 Appl. Phys. Lett. 97 062908

    Article  Google Scholar 

  16. Shahrjerdi D, Garcia-Gutierrez D I, Akyol T, Bank S R, Tutuc E, Lee J C et al 2007 Appl. Phys. Lett. 91 193503

  17. Diale M and Auret F D 2009 Physica B 404 4415

    Article  CAS  Google Scholar 

  18. Aydin M E, Akkilic K and Kilicoglu T 2004 Appl. Surf. Sci. 225 318

    Article  CAS  Google Scholar 

  19. Biber M, Temirci C and Turut A 2002 J. Vac. Sci. Technol. B 20 10

    Article  CAS  Google Scholar 

  20. Ashery A, Elnasharty M M M, Farag A A M, Salem M A and Nasralla N 2017 Superlattices Microstruct. 109 662

    Article  CAS  Google Scholar 

  21. Ebeoglu M A and Temurtas F 1998 Solid-State Electron. 42 23

    Article  CAS  Google Scholar 

  22. Budhraja V, Wang X and Misra D 2010 J. Mater. Sci.: Mater. Electron. 21 1322

    CAS  Google Scholar 

  23. Budhraja V and Misra D 2008 ECS Trans. 16 455

    Article  CAS  Google Scholar 

  24. Reddy V R, Janardhanam V, Won J and Choi C J 2017 J. Colloid Interface Sci. 499 180

    Article  Google Scholar 

  25. Vural Ö, Safak Y, Altındal S and Turut A 2010 Curr. Appl. Phys. 10 761

    Article  Google Scholar 

  26. Biyikli N, Karabulut A, Efeoglu H, Guzeldir B and Turut A 2014 Phys. Scr. 89 095804

    Article  Google Scholar 

  27. Reddy V R, Reddy Y M, Padmasuvarna R and Narasappa T L 2015 Procedia Mater. Sci. 10 666

    CAS  Google Scholar 

  28. Zhu S, Detavernier C, Van Meirhaeghe R L, Cardon F, Ru G P, Qu X P et al 2000 Solid-State Electron. 44 1807

    Article  CAS  Google Scholar 

  29. Dalapati G K, Kumar M K, Chia C K, Gao H, Wang B Z, Wong A S W et al 2010 J. Electrochem. Soc. 157 H825

    Article  CAS  Google Scholar 

  30. Barreca D, Milanov A, Fischer R A, Devi A and Tondello E 2007 Surf. Sci. Spectra 14 34

    Article  CAS  Google Scholar 

  31. Al-Kuhaili M F, Durrani S M A and Khawaja E E 2004 J. Phys. D: Appl. Phys. 37 1254

    Article  CAS  Google Scholar 

  32. Turgut G, Aksoy G, İskenderoğlu D, Turgut U and Duman S 2017 Ceram. Int. 44 3921

    Article  Google Scholar 

  33. Turgut G, Kurt M S, Ertuğrul M, İskenderoglu D, Duman S and Gurbulak B 2008 Optik 165 310

    Article  Google Scholar 

  34. Kahveci O, Akkaya A, Ayyildiz E and Turut A 2017 Surf. Rev. Lett. 24 1750047

    Article  CAS  Google Scholar 

  35. Jiang Y L, Ru G P, Lu F, Qu X P, Li B Z, Li W et al 2002 Chin. Phys. Lett. 19 553

    Article  Google Scholar 

  36. Chin V W L, Green M A and Storey J W V 1990 J. Appl. Phys. 68 3470

    Article  CAS  Google Scholar 

  37. Bouiadjra W B, Saidane A, Mostefa A, Henini M and Shaf M 2014 Superlattices Microstruct. 71 225

    Article  Google Scholar 

  38. Norde H 1979 J. Appl. Phys. 50 5052

    Article  CAS  Google Scholar 

  39. Sato K and Yasumura Y 1985 J. Appl. Phys. 58 3655

    Article  Google Scholar 

  40. Ayyildiz E, Temirci C, Bati B and Turut A 2001 Int. J. Electron. 88 625

    Article  Google Scholar 

  41. Werner J H and Güttler H H 1991 J. Appl. Phys. 69 1522

    Article  CAS  Google Scholar 

  42. Song Y P, Van Meirhaeghe R L, Laflére W H and Cardon F 1986 Solid-State Electron. 29 633

    Article  CAS  Google Scholar 

  43. Chand S and Kumar J 1997 Appl. Phys. A 65 497

    Article  CAS  Google Scholar 

  44. Yakuphanoglu F and Senkal B F 2008 Synth. Met. 158 821

    Article  CAS  Google Scholar 

  45. Huang W C, Lin T C, Horng C T and Li Y H 2013 Mater. Sci. Semicond. Process 16 418

    Article  CAS  Google Scholar 

  46. Osvald J 2006 Solid State Commun. 138 39

    Article  CAS  Google Scholar 

  47. Maeda T, Okada M, Ueno M, Yamamoto Y, Kimoto T, Horita M et al 2017 Appl. Phys. Exp. 10 051002

    Article  Google Scholar 

  48. Kavasoglu N, Kavasoglu A S and Metin B 2015 Mater. Res. Bull. 70 804

    Article  CAS  Google Scholar 

  49. Huang W C, Lin T C, Horng C T and Li Y H 2013 Mater. Sci. Semicond. Process. 16 418

    Article  CAS  Google Scholar 

  50. Karadan P, Parida S, Kumar A, Anappara A A, Dhara S and Barshilia H C 2017 Appl. Phys. A 123 681

    Article  Google Scholar 

  51. Yıldırım N, Turut V and Turut A 2010 Microelectron. Eng. 87 2225

    Article  Google Scholar 

  52. Yıldırım N and Turut A 2009 Microelectron. Eng. 86 2270

    Article  Google Scholar 

  53. Chand S and Bala S 2005 Appl. Surf. Sci. 252 358

    Article  CAS  Google Scholar 

  54. Anılturk O S and Turan R 2000 Solid-State Electron. 44 41

    Article  Google Scholar 

  55. Yoo K and Lee J H 2017 IEEE Elect. Dev. Lett. 38 426

    Article  CAS  Google Scholar 

  56. Jabli F, Gassoumi M, Ben Hamadi N, Charfeddine M, Alharbi T, Zaidi M A et al 2017 Silicon 9 629

    Article  CAS  Google Scholar 

  57. Bestas A N, Yazıcı S, Aktas F and Abay B 2014 Appl. Surf. Sci. 318 280

    Article  CAS  Google Scholar 

  58. He Q, Mu W, Dong H, Long S, Jia Z, Lv H et al 2017 Appl. Phys. Lett. 110 093503

    Article  Google Scholar 

  59. Kumar R and Chand S 2016 Solid State Sci. 58 115

    Article  CAS  Google Scholar 

  60. Taşer A, Güzeldir B and Sağlam M 2017 Mater. Sci. Semicond. Process. 68 186

    Article  Google Scholar 

  61. Kaushal P and Chand S 2016 Int. J. Electron. 103 937

    Article  CAS  Google Scholar 

  62. Mahato S and Puigdollers J 2018 Physica B 530 327

    Article  CAS  Google Scholar 

  63. Güllü H H, Bayraklı Ö, Yildiz D E and Parlak M 2017 J. Mater. Sci.: Mater. Electron. 28 17806

    Google Scholar 

  64. Singh R, Sharma P, Khan M A, Garg V, Awasthi V, Kranti A et al 2016 J. Phys. D: Appl. Phys. 49 445303

    Article  Google Scholar 

  65. Sevgili O, Yılmaz S, Altındal S, Bacaksız E and Bilkan C 2017 Proc. Natl. Acad. Sci., India, Sect. A 87 409

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulkerim Karabulut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabulut, A. Barrier height modification in Au/Ti/n-GaAs devices with a \(\hbox {HfO}_{2}\) interfacial layer formed by atomic layer deposition. Bull Mater Sci 42, 5 (2019). https://doi.org/10.1007/s12034-018-1696-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1696-x

Keywords

Navigation