Skip to main content
Log in

Current conduction mechanisms in HfO2 and SrHfON thin films prepared by magnetron sputtering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal–oxide–semiconductor (MOS) capacitors incorporating HfO2 and SrHfON gate dielectrics were fabricated by magnetron sputtering. The interface quality, thermal stability, and electrical properties of the MOS capacitors have been investigated. Compared to HfO2 dielectric film, SrHfON dielectric film has thin interface layer with Si substrate, good thermal stability, and low leakage current densities. The dominant current conduction mechanisms (CCMs) of HfO2 film are Schottky emission or Poole–Frenkel emission at low and high electric fields. The main CCMs of SrHfON film are Schottky emission or Poole–Frenkel emission at low electric field, whereas, the CCMs are replaced by space charge limited current at high electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He G, Zhu L, Sun Z, Wan Q, Zhang L (2011) Integrations and challenges of novel high-k gate stacks in advanced CMOS technology. Prog Mater Sci 56:475–572

    Article  CAS  Google Scholar 

  2. Sudheendran K, James Raju KC (2011) Electrical properties of pulsed laser deposited Bi2Zn2/3Nb4/3O7 thin films for high K gate dielectric application. J Mater Sci Mater Electron 22:626–630

    CAS  Google Scholar 

  3. He G, Chen X, Sun Z (2013) Interface engineering and chemistry of Hf-based high-k dielectrics on III–V substrates. Surf Sci Rep 68:68–107

    Article  CAS  ADS  Google Scholar 

  4. Neumayer DA, Cartier E (2001) Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition. J Appl Phys 90:1801–1808

    Article  CAS  ADS  Google Scholar 

  5. Akbar MS, Cho HJ, Choi R, Kang CS, Kang CY, Choi CH, Rhee SJ, Kim YH, Lee JC (2004) Optimized NH3 annealing process for high-quality HfSiON gate oxide. IEEE Electron Device Lett 25:465–467

    Article  CAS  ADS  Google Scholar 

  6. Liu YX, Shim SI, Wang XW, Lee LS, Tsai MJ, Ma TP (2008) High-quality high-k HfON formed with plasma jet assisted PVD process and application as tunnel dielectric for flash memories. Microelectron Eng 85:45–48

    Article  CAS  Google Scholar 

  7. Zhu WJ, Tamagawa T, Gibson M, Furukawa T, Ma TP (2002) Effect of Al Inclusion in HfO2 on the physical and electrical properties of the dielectrics. IEEE Electron Device Lett 23:649–651

    Article  CAS  ADS  Google Scholar 

  8. Sen B, Yang BL, Wong H, Kok CW, Chu PK, Huang A (2008) Effects of aluminum incorporation on hafnium oxide film using plasma immersion ion implantation. Microelectron Reliab 48:1765–1768

    Article  CAS  Google Scholar 

  9. Cheng XH, Song ZR, Jiang J, Yu YH, Yang WW, Shen DS (2006) Study of HfSiO film prepared by electron beam evaporation for high-k gate dielectric applications. Appl Surf Sci 252:8073–8076

    Article  CAS  ADS  Google Scholar 

  10. Kim J, Yong K (2007) MOCVD and characterization of Hf-silicate thin films using HTB and TEMAS. J Non-Cryst Solids 353:1172–1176

    Article  CAS  ADS  Google Scholar 

  11. Liu CH, Juan PC, Lin JY (2010) The influence of lanthanum doping position in ultra-thin HfO2 films for high-k gate dielectrics. Thin Solid Films 518:7455–7459

    Article  CAS  ADS  Google Scholar 

  12. Yu Q, Xu G, Wang W, Chen D, Shi S, Han Z, Ye T (2008) Study on characteristics of thermally stable HfLaON gate dielectric with TaN metal gate. Appl Phys Lett 93:252903

    Article  ADS  Google Scholar 

  13. Feng LP, Liu ZT (2009) Structural and electrical properties of thin SrHfON films for high-k gate dielectric. Appl Phys Lett 94:252907

    Article  ADS  Google Scholar 

  14. Feng LP, Wang YQ, Tian H, Liu ZT (2012) Effect of annealing on composition, structure and optical properties of SrHfON thin films. Appl Surf Sci 258:9706–9710

    Article  CAS  ADS  Google Scholar 

  15. Feng LP, Liu ZT, Tian H, Liu L (2012) Influence of RF power on structure and electrical properties of sputtered SrHfON thin films. Mater Lett 78:66–68

    Article  CAS  Google Scholar 

  16. Feng LP, Liu ZT, Shen YM (2009) Compositional, structural and electronic characteristics of HfO2 and HfSiO dielectrics prepared by radio frequency magnetron sputtering. Vacuum 83:902–905

    Article  CAS  Google Scholar 

  17. Mallouky A, Bernede JC (1988) Characterization of MoSe2 thin films. Thin Solid Films 158:285–298

    Article  CAS  ADS  Google Scholar 

  18. Lupina G, Kozłowski G, Dabrowski J, Dudek P, Lippert G, Müssig HJ (2008) Dielectric and structural properties of thin SrHfO3 layers on TiN. Appl Phys Lett 93:252907

    Article  ADS  Google Scholar 

  19. Cho DY, Oh SJ, Chang YJ, Noh TW, Jung R, Lee JC (2006) Role of oxygen vacancy in HfO2/SiO2/Si(100) interfaces. Appl Phys Lett 88:193502

    Article  ADS  Google Scholar 

  20. He G, Liu M, Zhu LQ, Chang M, Fang Q, Zhanget LD (2005) Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (1 0 0). Surf Sci 576:67–75

    Article  CAS  ADS  Google Scholar 

  21. Chou YH, Chiu HT, Kuo TF, Chi CC, Chuang SH (2006) Intriguing conducting properties of HfO x N y thin films prepared from the Hf[N(C2H5)2]4. Appl Phys Lett 89:252901

    Article  ADS  Google Scholar 

  22. Yu T, Jin C, Yang X, Dong Y, Zhang H, Zhuge L, Wu X, Wu Z (2012) The structure and electrical properties of HfTaON high-k films prepared by DIBSD. Appl Surf Sci 258:2953–2958

    Article  CAS  ADS  Google Scholar 

  23. Pant G, Gnade A, Kim MJ, Wallace RM, Gnade BE (2006) Comparison of electrical and chemical characteristics of ultrathin HfON versus HfSiON dielectrics. Appl Phys Lett 89:032904

    Article  ADS  Google Scholar 

  24. Kirsch PD, Kang CS, Lozano J, Lee JC, Ekerdt JG (2002) Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si(100). J Appl Phys 91:4353–4363

    Article  CAS  ADS  Google Scholar 

  25. Kang CS, Cho HJ, Onishi K, Nieh R, Choi R, Gopalan S, Krishnan S, Han JH, Lee JC (2002) Bonding states and electrical properties of ultrathin HfO x N y gate dielectrics. Appl Phys Lett 81:2593–2595

    Article  CAS  ADS  Google Scholar 

  26. Koyama M, Kaneko A, Ino T, Koike M, Kamata Y, Iijima R, Kamimuta Y, Takashima A, Suzuki M, Hongo C, Inumiya S, Takayanagi M, Nishiyama A (2002) Effects of nitrogen in HfSiON gate dielectric on the electrical and thermal characteristics. Tech Dig IEDM 849–852

  27. Wang H, Wang Y, Zhang J, Ye C, Wang HB, Feng J, Wang BY, Li Q, Jiang Y (2008) Interface control and leakage current conduction mechanism in HfO2 film prepared by pulsed laser deposition. Appl Phys Lett 93:202904

    Article  ADS  Google Scholar 

  28. Puthenkovilakam R, Sawkar M, Chang JP (2005) Electrical characteristics of postdeposition annealed HfO2 on silicon. Appl Phys Lett 86:202902

    Article  ADS  Google Scholar 

  29. Zhao R, Li WW, Chen L, Meng QQ, Yang J, Wang H, Wang YQ, Tang RJ, Yang H (2012) Conduction mechanisms of epitaxial EuTiO3 thin films. Appl Phys Lett 101:102901

    Article  ADS  Google Scholar 

  30. Seo Y, Lee S, An I, Song C, Jeong H (2009) Conduction mechanism of leakage current due to the traps in ZrO2 thin film, semiconductor science and technology. Semicond Sci Technol 24:115016

    Article  ADS  Google Scholar 

  31. Pan RK, Zhang TJ, Wang JY, Wang JZ, Wang DF, Duan MG (2012) Mechanisms of current conduction in Pt/BaTiO3/Pt resistive switching cell. Thin Solid Films 520:4016–4020

    Article  CAS  Google Scholar 

  32. Sze SM (ed) (2007) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  33. Maissel LI, Glang R (eds) (1970) Handbook of thin film technology. McGraw-Hill Inc., New York

    Google Scholar 

  34. Liu W, Liu Z, Yan F, Tan T (2010) Influence of RF power on the structure and optical properties of sputtered hafnium dioxide thin films. Phys B 405:1108–1112

    Article  CAS  ADS  Google Scholar 

  35. Hullavarad SS, Pugel DE, Jones EB, Vispute RD, Venkatesan T (2007) Low leakage current transport and high breakdown strength of pulsed laser deposited HfO2/SiC metal-insulator-semiconductor device structures. J Electron Mater 36:648–653

    Article  CAS  ADS  Google Scholar 

  36. Lampert MA, Mark P (eds) (1970) Current injection in solids. Academic Press, New York

    Google Scholar 

  37. Rose A (1955) Space-charge-limited currents in solids. Phys Rev 97:1538

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (Contract No. 61376091), the Natural Science Foundation of Shaanxi Province (Contract No. 2012JM6012), the 111 Project (Contract No. B07040), and the Northwestern Polytechnical University Foundation for Fundamental Research (Contract No. JC20110245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-ping Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Lp., Li, N., Tian, H. et al. Current conduction mechanisms in HfO2 and SrHfON thin films prepared by magnetron sputtering. J Mater Sci 49, 1875–1881 (2014). https://doi.org/10.1007/s10853-013-7876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7876-6

Keywords

Navigation