Skip to main content
Log in

Magnetic phase transitions leading to Griffith’s singularity with electrical and dielectric anomalies in transport properties of LaMnO3+δ

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The polycrystalline LaMnO3+δ has been investigated and studied in detail for its structural, magnetic, electrical transport and dielectric properties. Perovskite manganites like LaMnO3+δ is intrinsically inhomogeneous and exhibit disorders, which lead to different types of critical phenomenon. The magnetization measurement suggests the occurrence of Griffith’s phase (means no clear phase separation in this region) like phenomenon arising above critical temperature TC. This is also reflected as a small hump in electrical resistivity measurement about the same temperature as observed in magnetization measurements. The occurrence of Griffith’s phase-like phenomenon arising above the critical temperature TC in LaMnO3+δ manganites is found due to the quenched disorder in the co-operative interactions of the frustrated magnetic spins. The analysis of electrical resistivity measurements further suggests that the transport properties in this region follows Shklovskii–Efros variable range hopping (SE-VRH) mechanism, as the sample encompass disorder and frustration. The Magneto-resistance (MR) at different temperatures measured with respect to the applied magnetic field further concludes the characteristic dependent on Brillouin function. The Dielectric measurements carried out on the sample exhibits multiple relaxation behavior, which is understood using combined Debye-Maxwell Wagner relaxor dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Laiho R, Lisunov K G, Lähderanta E, Petrenko P A, Salminen J, Stamov V N et al 2003 J. Phys. Chem. Solids 64 2313

    Article  CAS  Google Scholar 

  2. Laiho R, Lisunov K G, Lähderanta E, Shubnikov M L, Stepanov Yu P, Petrenko P A et al 2006 J. Phys.: Condens. Matter. 18 10291

    CAS  Google Scholar 

  3. Coey J M D, Viret M and von Molnar S 2009 Adv. Phys. 58 571

    Article  CAS  Google Scholar 

  4. Tofield B C and Scott W R 1974 J. Solid State Chem. 10 183

    Article  CAS  Google Scholar 

  5. Van Roosmalen J A M and Cordfunke E H P 1994 J. Solid State Chem. 110 109

    Article  Google Scholar 

  6. Hauback B C, Helmer F and Sakai N 1996 J. Solid State Chem. 124 43

    Article  CAS  Google Scholar 

  7. Ritter C, Oseroff S and Cheong S W 1997 Phys. Rev. B 56 8902

    Article  CAS  Google Scholar 

  8. Ulyanov A N, Pismenova N E, Yang D S, Krivoruchko V N and Levchenko G G 2012 J. Alloys Compd. 550 124

    Article  Google Scholar 

  9. Zhao Y D, Park J, Jung R J, Noh H J and Oh S J 2004 J. Magn. Magn. Mater. 280 404

    Article  CAS  Google Scholar 

  10. Mazhar Iqbal, Khan Muhammad Nasir and Khan Ayaz Arif 2018 J. Mag. Mag. Mater. 465 670

    Article  Google Scholar 

  11. Punith Kumar V, Hadimani R L, Paladhi D, Nath T K, Jiles D C and Dayal V 2016 J. Alloys Comp. 681 212

    Article  CAS  Google Scholar 

  12. Punith Kumar V and Dayal V 2015 Mater. Res. Express 2 046105

    Article  Google Scholar 

  13. Newnham Robert E 2005 Atomistic arguments: density, properties of materials, anisotropy, symmetry, structure chapter 1.4. Oxford University Press, New York, p 5

    Google Scholar 

  14. Ilyas Noor Bhatti, Imtiaz Noor Bhatti, Rabindra Nath Mahato and Ahsan M A H 2019 Phys. Lett. A 383 2326

    Article  Google Scholar 

  15. Arulraj A, Mahesh R, Subbana G N, Mahendiran R, Raychaudhuri A K and Rao C N R 1996 J. Solid State Chem. 127 87

    Article  CAS  Google Scholar 

  16. Satyendra Prakash Pal and Sen P 2014 arXiv:1404.2665 [cond-mat.mes-hall]

  17. Glazman L I and Matveev K A 1988 Sov. Phys. JETP. 67 1276

    Google Scholar 

  18. Shklovskii B I and Efros A L (eds) 1984 Electronic properties of doped semiconductors. Springer, Berlin, p 180

    Google Scholar 

  19. Hwang H Y, Cheong S W, Ong N P and Batlogg B 1996 Phys. Rev. Lett. 77 2041

    Article  CAS  Google Scholar 

  20. Esa Bose, Karmakar S, Chaudhuri B K and Pal Sudipta 2007 Solid State Commun. 145 149

    Google Scholar 

  21. Wagner P, Gordon I, Trappeniers L, Vanacken J, Herlach F and Moshchalkov V V 1998 Phys. Rev. Lett. 81 3980

    Article  CAS  Google Scholar 

  22. Punith Kumar V, Dayal V, Hadimani R L, Bhowmik R N and Jiles D C 2015 J. Mater. Sci. 50 3562

    Article  CAS  Google Scholar 

  23. Mondal Parthasarathi, Bhattacharya Dipten and Choudhury Pranab 2006 J. Phys.: Condens. Matter. 18 6869

    CAS  Google Scholar 

  24. Indu Dhiman, Deshpande S K and Das A 2010 J. Appl. Phys. 108 083915

    Article  Google Scholar 

  25. Claudy Rayan Serrao, Sahu Jyoti Ranjan and Ghosh Anirban 2010 Bull. Mater. Sci. 33 169

    Article  Google Scholar 

  26. Chen Ang, Jurado J R, Zhi Yu, Colomer M T, Frade J R and Baptista J L 1998 Phys. Rev. B 57 11858

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the International Centre for Theoretical Sciences (ICTS) during a visit for the program—Novel phases of quantum matter (Code: ICTS/topmatter2019/12). I am greatly indebted to DAE-BRNS for junior research fellowship (JRF) and senior research fellowship (SRF) (2011–2015), Maharaja Research Foundation (MRF) for the extended SRF research fellowship (2015–2017), and Indian Institute of Science, Bangalore, for project research fellowship (2017–2018) under Dr Srimanta Middey (IISC Startup, Capital and Revenue Manpower Grant: 78-0103-0020-01-436). I thank Dr Kalavathi of IGCAR, Kalpakkam, for the XRD measurements. I gratefully acknowledge Dr D Das and Mr P V Rajesh of UGC-DAE CSR, Kolkata, for the DC magnetization measurements. I am also extremely grateful to Dr Rajeev Rawat and Mr Sachin of UGC-DAE CSR, Indore, for electrical resistivity measurements. I am also grateful to Dr S K Deshpande of UGC-DAE CSR, Mumbai, for dielectric measurements. Finally, I thank Dr Ravi L Hadimani, Virginia Commonwealth University, USA and Dr David C Jiles, FRS, Palmer Endowed Department Chair in Electrical and Computer Engineering, Iowa State University, USA, for their continuous support and inspirations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Punith Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V.P. Magnetic phase transitions leading to Griffith’s singularity with electrical and dielectric anomalies in transport properties of LaMnO3+δ. Bull Mater Sci 44, 136 (2021). https://doi.org/10.1007/s12034-021-02426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02426-1

Keywords

Navigation