Skip to main content
Log in

Negative Magnetic Entropy Change and Critical Behavior of Manganite La0.8Sr0.2Mn1−xCoxO3 (x = 0, 0.2)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

La0.8Sr0.2Mn1−xCoxO3 (x = 0, 0.2) polycrystalline samples were prepared by solid-state reaction, and their structural, Griffiths phase, magnetic entropy change, critical behavior, and electrical transport properties were systematically investigated. The results show that all polycrystalline samples are rhombohedral symmetry structures; the Griffiths phase exists above the low-temperature magnetic transition temperature (TC2) of the two samples; the magnetic field is applied to the La0.8Sr0.2Mn1−xCoxO3 (x = 0, 0.2) samples. The maximum magnetic entropy change ΔSmax for 7 T is − 2.28 and − 2.36 J/(kg K), respectively. The doping of Co makes ΔSmax increase, and an obvious negative entropy change occurs at low temperature and low field; the critical behavior of La0.8Sr0.2MnO3 (LSMO) fits best with the mean field model, and the critical behavior of the sample after doping with the 3D Heisenberg model fits best; LSMO is a semiconductor material, and the metal insulator transition appears near the low-temperature magnetic transition temperature (TC2) when the Co element doping amount reaches 0.2. The conductivity of the two samples in the high-temperature region satisfies the small polaron model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Chabara, T. Ohno, M. Kasai, Y. Kozono, Appl. Phys. Lett. 63, 1990 (1993)

    Article  ADS  Google Scholar 

  2. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, L.H. Chen, Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  3. Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, N. Fukukawa, Phys. Soc. Jpn. 63, 3931 (1994)

    Article  ADS  Google Scholar 

  4. G.Y. Wang, N. Liu, J. Suzhou Univ. 23, 109 (2008). (in Chinese)

    Google Scholar 

  5. M. El-Hagary, Y.A. Shoker, S. Mohammad, A.M. Moustafa, A. Abd El-Aal, H. Michor, M. Reissner, G. Hilscher, A.A. Ramadan, J. Alloys Compd. 468, 47 (2009)

    Article  Google Scholar 

  6. M.D. Mukadam, S.M. Yusuf, J. Appl. Phys. 105, 063910 (2009)

    Article  ADS  Google Scholar 

  7. R.B. Griffiths, Phys. Rev. Lett. 23, 17 (1969)

    Article  ADS  Google Scholar 

  8. A.J. Bray, M.A. Moore, J. Phys. C 15, L765 (1982)

    Article  ADS  Google Scholar 

  9. A.J. Bray, Phys. Rev. Lett. 59, 586 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, Phys. Rev. Lett. 95, 257202 (2005)

    Article  ADS  Google Scholar 

  11. A.J. Bray, D. Huifang, Phys. Rev. B 40, 6980 (1989)

    Article  ADS  Google Scholar 

  12. J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, Phys. Rev. Lett. 95, 257202 (2005)

    Article  ADS  Google Scholar 

  13. B.H. Li, W.X. Xianyu, X. Wan, J. Zhang, B.G. Shen, Acta Phys. Sin. 49, 1300 (2000). (in Chinese)

    Google Scholar 

  14. G. Li, P. Tang, X. Sun, Y. Jiang, Y. Chen, S. Wang, Z. Huang, S.L. Yuan, Acta Phys. Sin. 48, 505 (1999)

    Google Scholar 

  15. K. Jiang, S.K. Gong, Chin. Phys. B 18, 3035 (2009)

    Article  ADS  Google Scholar 

  16. K. Jiang, Acta Phys. Sin. 59, 2802 (2009)

    Google Scholar 

  17. T.A. Ho, S.H. Lin, C.M. Kim, M.H. Jung, T.O. Ho, P.T. Tho, T.L. Phan, S.C. Yu, J. Magn. Magn. Mater. 38, 30395 (2017)

    Google Scholar 

  18. P.R. Mandal, T.K. Nath, Mater. Res. Express 2, 066101 (2015)

    Article  ADS  Google Scholar 

  19. L. Chengliang, H. Ni, M. Yang, S. Xia, H. Wang, J. Wang, Z. Xia, J. Liu, Sci. Rep. 4, 4902 (2014)

    Google Scholar 

  20. R. Xing, L. Zheng, M. Zhou, Y. Lu, J.J. Zhao, Chin. J Low Temp. Phys. 12, 53 (2016). (in Chinese)

    Google Scholar 

  21. P.Y. Zhang, H.F. Yang, S.Y. Zhang, H.L. Ge, S.H. Hua, Phys. B 410, 1 (2013)

    Article  ADS  Google Scholar 

  22. B.K. Banerjee, Phys. Lett. 12, 16 (1964)

    Article  ADS  Google Scholar 

  23. D. Turki, Z.K. Ghouri, S. Al-Meer, K. Elsaid, M.I. Ahmad, A. Easa, G. Remenyi, S. Mahmood, E.K. Hlil, M. Ellouze, F. Elhalouani, Magnetochemistry 3(28), 1 (2017)

    Google Scholar 

  24. X.D. Sun, B. Xu, H.Y. Wu, F.Z. Cao, J.J. Zhao, Y. Lu, Acta Phys. Sin. 66, 157501 (2017)

    Google Scholar 

  25. M.S. Reis, A.M. Gomes, J.P. Araứjo, J.S. Amaral, P.B. Tavares, I.S. Oliveira, V.S. Amaral, J. Magn. Magn. Mater. 290–291, 697 (2005)

    Article  Google Scholar 

  26. Y. Lu, J.J. Zhao, H.Y. Wu, Y.B. Sun. B. Xu, in Research Progress of Magnetic Functional Materials (Beijing University of Posts and Telecommunications Press, Beijing, 2013). pp. 35–36

Download references

Acknowledgements

This work was supported by the Department of Physics, Baotou Normal University and Inner Mongolia Key Laboratory of Magnetism and Magnetic Materials. The authors thank Tian Ye, Cao Fengze, Wang Ting, and Wu Hongye for the experimental support provided. Special thanks to teachers Wang and Zhao for their support in understanding the theoretical concepts.

Funding

The project was supported by the National Natural Science Foundation of China (Grant Nos. 11164019, 51562032, 61565013) and the Inner Mongolia Natural Science Foundation (Grant Nos. 2015MS0109, NJZZ11166, NJZY12202, NJZY16237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Xing.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, Wq., Wu, Hy. et al. Negative Magnetic Entropy Change and Critical Behavior of Manganite La0.8Sr0.2Mn1−xCoxO3 (x = 0, 0.2). J Low Temp Phys 195, 81–95 (2019). https://doi.org/10.1007/s10909-018-02138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-02138-7

Keywords

Navigation