Skip to main content
Log in

Magnetic and electrical properties of Ti-substituted lanthanum bismuth manganites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We are reporting the influence of non-magnetic Ti ions on magnetic, electrical, magneto-transport, and dielectric responses in polycrystalline ferromagnetic insulating samples \( {\text{La}}_{ 0. 4} {\text{Bi}}_{ 0. 6} {\text{Mn}}_{{ 1 { - }x}} {\text{Ti}}_{x} {\text{O}}_{ 3} \) (x = 0.05 and 0.10) synthesized by solid-state route method. Powder X-ray diffraction analysis reveals that the samples crystallize in tetragonal structure indexed to I4/mcm space group. Scanning electron micrographs suggest that the increase in Ti substitution inhibits grain growth process leading to decrease in grain size. The characteristic magnetic dilution with increase in x is evident due to the non-magnetic nature of the Ti ions. Also, in magnetization curve, the observed glassy behavior restricts the long-range magnetic spin interactions in the broader temperatures range. The electrical resistivity measurements exhibited semiconducting nature throughout the measured temperature range (110–300 K) without metal-semiconductor phase transition. The magneto-transport behavior in the paramagnetic region (for T > 150 K) follows \( \left[ {{\text{MR}}\sim \frac{\Delta \rho }{{\rho \left( {0T} \right)}}} \right] \propto H^{n} \) relation, giving possible correlation between electrical and magnetic properties. Resistivity data at low temperature region suggest that the conduction is due to the hopping of charge carrier, satisfying SE-VRH mechanism. However, the resistivity data at high-temperature regime suggest the localization of small polarons. The large dielectric responses achieved with multiple relaxations are understood due to extrinsic and intrinsic properties. Complex impedance spectrums have been analyzed using equivalent circuits to determine different contributions responsible for the relaxation process with Ti substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rao CNR, Raveau B (eds) (1998) Colossal magnetoresistance, charge ordering, and related properties of manganese oxides. World Scientific, Singapore

    Google Scholar 

  2. Nagaev EL (2001) Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys Rep 346:387–531

    Article  Google Scholar 

  3. Zener C (1951) Interaction between the d shells in the transition metals. Phys Rev 81:440–444

    Article  Google Scholar 

  4. Kochur AG et al (2013) Valence state of manganese ions in the La1−α Bi β Mn1+δ Oγ ceramics. Phys Solid State 55:743–747

    Article  Google Scholar 

  5. Zhao YD, Park J, Jung RJ, Noh HJ, Oh SJ (2004) Structure, magnetic and transport properties of La1−x Bi x MnO3. J Magn Magn Mater 280:404–411

    Article  Google Scholar 

  6. Troyanchuk IO, Mantytskaja OS, Szymczak H, Shvedun MY (2002) Magnetic phase transitions in the system La1−x Bi x MnO3 + l. Low Temp Phys 28:569

    Article  Google Scholar 

  7. Garcia-Munoz JL, Frontera C, Aranda MAG, Llobet A, Ritter C (2001) High-temperature orbital and charge ordering in Bi1/2Sr1/2MnO3. Phys Rev B 63:064415

    Article  Google Scholar 

  8. Nam DNH, Bau LV, Khiem NV, Dai NV, JHong LV, Phuc NX, Newrock RS, Nordblad P (2006) Local distortions in La0.7Ca0.3Mn1−b A b O3, (A = Ti and Ga) colossal magnetoresistance samples: correlations with magnetization and evidence for cluster formation. Phys Rev B 73:184430

    Article  Google Scholar 

  9. Rivadulla F, Lopez-Qunitela MA, hueso LE, Sande P, Rivas J, Sanchez RD (2000) Effect of Mn-site doping on the magnetotransport properties of the colossal magnetoresistance compound La2/3Ca1/3Mn1−x A x O3(A = Co, Cr; x ≤ 0.1). Phys Rev B 62:5678

    Article  Google Scholar 

  10. Kwei GH, Lawson AC, Billinge SJL, Cheong SW (1993) Structures of the ferroelectric phases of barium titanate. J Phys Chem 97:2368–2377

    Article  Google Scholar 

  11. Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X (2015) Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electro acoustic transducers–a review. Prog Mater Sci 68:1–66

    Article  Google Scholar 

  12. Wang Z, Cao M, Yao Z, Song Z, Li G, Wei H, HuaHao, Liu H (2014) Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram Inter 40:14127–14132

    Article  Google Scholar 

  13. Primus WC, Shaari AH, Yusoff WMDW, Talib ZA, Mustafa M (2009) Dielectric properties of La0.4Ca0.6Mn0.4Ti0.6O3 ceramic oxide. J Fundam Sci 5:63–67

    Google Scholar 

  14. Jha P, Rai S, Ramanujachary KV, Lovland SE, Ganguli AK (2004) (La0.4Ba0.4Ca0.2)(Mn0.4Ti0.6)O3: a new titano-manganate with a high dielectric constant and antiferromagnetic interactions. J Solid State Chem 177:2881–2888

    Article  Google Scholar 

  15. Li M, Feteira A, Sinclair DC (2005) Origin of the high permittivity in (La0.4Ba0.4Ca0.2)(Mn0.4Ti0.6) O3 ceramics. J Appl Phys 98:084101-1–084101-6

    Google Scholar 

  16. Simoes AZ, Pianno RF, Riccardi CS, Cavalcante LS, Longo E, Varela JA (2008) Dielectric properties of pure and lanthanum modified bismuth titanate thin films. J Alloy Compd 454:66–71

    Article  Google Scholar 

  17. Khomchenko VA, Troyanchuk IO, Mantytskaya OS, Tovarb M, Szymczak H (2006) Crystalline and magnetic structures of La1−x Bi x MnO3+δ Manganites. J Exper Theor Phys 103:54–59

    Article  Google Scholar 

  18. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, Massachusetts

    Google Scholar 

  19. Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152

    Article  Google Scholar 

  20. Sahana M, Venimadhav A, Hegde MS, Nenkov K, Roβler UK, Dorr K, Muller K-H (2003) Magnetic properties and specific heat of LaMn1−x Ti x O3+δ (0 < x < 0.2). J Magn Magn Mater 260:361–370

    Article  Google Scholar 

  21. Hu J, Qin H, Chen J, Wang Z (2002) Enhancement of room temperature magnetoresistance in La0.67Sr0.33Mn1−x Ti x O3manganites. Mater Sci Eng B 90:146

    Article  Google Scholar 

  22. Cao D, Bridges F, Anderson M, Ramirez AP, Olapinski M, Subramanian MA, Booth CH, Kwei GH (2001) Local distortions in La0.7Ca0.3Mn1−b A b O3(A = Ti and Ga) colossal magnetoresistance samples: correlations with magnetization and evidence for cluster formation. Phys Rev B 64:184409

    Article  Google Scholar 

  23. Kallel N, Dezanneau G, Dhahri J, Oumezzine M, Vincent H (2003) Structure, magnetic and electrical behaviour of La0.7Sr0.3Mn1−x Ti x O3 with 0 < x < 0.3. J Magn Magn Mater 261:56–65

    Article  Google Scholar 

  24. Bhowmik RN, Vijayasri G (2013) Study of microstructure and semiconductor to metallic conductivity transition in solid state sintered Li0.5Mn0.5Fe2O4-δ spinel ferrite. J Appl Phys 114:223701

    Article  Google Scholar 

  25. Bhowmik RN (2014) Temperature- and frequency-activated semiconductor-to-metal transition in soft ferromagnetic Li0.5Mn0.5Fe2O4 ferrite. Mater Res Express 1:015903

    Article  Google Scholar 

  26. Dayal V, Punith Kumar V, Hadimani RL, Jiles DC (2014) Evolution of Griffith’s phase in La0.4Bi0.6Mn1−x Ti x O3 perovskite oxide. J Appl Phys 115:17E111

    Article  Google Scholar 

  27. Sahana M, Dorr K, Doerr M, Eckert D, Muller KH, Nenkov K, Schultz L, Hegde MS (2000) Magnetism of Ti4+ diluted manganites La1−x Pb x Mn1−y Ti y O3 (y ≤ x). J Magn Magn Mater 213:253–261

    Article  Google Scholar 

  28. Liu X, Xu X, Zhang Y (2000) Effect of Ti dopant on the carrier density collapse in colossal magnetoresistance material La0.7Ca0.3Mn1−y Ti y O3. Phys Rev B 62:15112

    Article  Google Scholar 

  29. Ulyanov AN, Yang D-S, Lee K-W, Greneche J-M, Chau N, Yu S-C (2006) J Magn Magn Mater 300:e175–e178

    Article  Google Scholar 

  30. Chou CC, Huang CL, Mukherjee S, Chen QY, Sakurai H, Belik AA, Takayama- Muromachi E, Yang HD (2009) Multiple magnetic transitions in multiferroic BiMnO3. Phys Rev B 80:184426

    Article  Google Scholar 

  31. Kim MS, Yang JB, Cai Q, Zhou XD, James WJ, Yelon WB, Parris PE, Buddhikot D, Malik SK (2005) Structure, magnetic, and transport properties of Ti-substituted La0.7Sr0.3MnO3. Phys Rev B 71:014433

    Article  Google Scholar 

  32. Zhu XB, Sun YP, Ang R, Zhao BC, Song WH (2006) Magnetic and transport properties of La0.7Sr0.3Mn1−x Ti x O3 (0 ≤ x ≤ 0.5) films prepared by chemical solution deposition. J Phys D 39:625–630

    Article  Google Scholar 

  33. Kallel N, Frohlich K, Pignard S, Oumezzine M, Vincent H (2005) Structure, magnetic and magnetoresistive properties of La0.7Sr0.3Mn1−x Sn x O3 samples (0 ≤ x ≤ 0.20). J Alloy Compd 399:20–26

    Article  Google Scholar 

  34. Kulkarni V, Priolkar KR, Sarode PR, Rawat R, Banerjee A, Emura S (2008) Effect of Ti4+ substitution on structural, transport and magnetic properties of La0.67Sr0.33Mn1−x Ti x O3. J Phys 20:075203

    Google Scholar 

  35. Hwang H, Cheong S-W, Ong NP, Batlogg B (1996) Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys Rev Lett 77:2041

    Article  Google Scholar 

  36. Helman JS, Abeles B (1976) Tunneling of spin-polarized electrons and magnetoresistance in granular Ni films. Phys Rev Lett 37:1429

    Article  Google Scholar 

  37. Gross R, Alff L, Buchner B, Freitag BH, HoKfener C, Klein J, Yafeng Lu, Mader W, Philipp JB, Rao MSR, Reutler P, Ritter S, Thienhaus S, Uhlenbruck S, Wiedenhorst B (2000) Physics of grain boundaries in the colossal magnetoresistance manganites. J Magn Magn Mater 211:150–159

    Article  Google Scholar 

  38. Bhattacharya S et al (2003) Effect of Li doping on the magnetotransport properties of La0.7Ca0.3−y Li y MnO3 system: decrease of metal–insulator transition temperature. Appl Phys Lett 82:4101

    Article  Google Scholar 

  39. Holstein T (1959) studies of polaron motion, part II. The small polaron. Ann Phys 8:343

    Article  Google Scholar 

  40. Mott NF, Davies EA (1979) Electron processes in non-crystalline materials. Clarendon, Oxford, p 32

    Google Scholar 

  41. Castner TG (1991). Hopping conduction in the critical regime approaching the metal-insulator transition. In: Pollak M, Shklovskii B (eds) Hopping transport in solids, (chap. 1). Elsevier, Amsterdam, pp 1–47

  42. Zhang WY, Zhao YG, Guo ZP, Qiao PT, Cui L, Luo LB, Zhang XP, Yu HC, Shi YG, Zhang SY, Zhao TY, Li JQ (2005) Effect of Ti doping on the electrical transport and magnetic properties of layered compound Na0.8CoO2. Solid State Commun 135:480–484

    Article  Google Scholar 

  43. Choudhury D, Mandal P, Mathieu R, Hazarika A, Rajan S, Sundaresan A, Waghmare UV, Knut R, Karis O, Nordblad P, Sarma DD (2012) Near-room-temperature colossal magneto-dielectricity and multi glass properties in partially disordered La2NiMnO6. Phys Rev Lett 108:127201

    Article  Google Scholar 

  44. Khao KC (2004) Dielectric phenomena in solids. Elsevier Academic Press, California

    Google Scholar 

  45. Von Hippel AR (1966) Dielectrics and waves. M.I.T. Press, Cambridge

    Google Scholar 

  46. Viehland D, Li JF, Jang SJ, Cross LE, Wuttig M (1991) Dipolar-glass model for lead magnesiumniobate. Phys Rev B 43:8316–8320

    Article  Google Scholar 

  47. Martinez R, Kumar A, Palai R, Scott JF, Katiyar RS (2011) Impedance spectroscopy analysis of Ba0.7Sr03TiO3/La0.7Sr0.3MnO3 heterostructure. J Phys D 44:105302

    Article  Google Scholar 

  48. West AR, Sinclair DC, Hirose N (1997) Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J Electroceram 1:65–71

    Article  Google Scholar 

  49. Ponpandian N, Balaya P, Narayanasamy A (2002) Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J Phys 14:3221–3237

    Google Scholar 

Download references

Acknowledgements

This work is supported by Department of Atomic Energy-Board of Research of Nuclear Sciences (DAE-BRNS), Govt. of India under DAE-Young Scientist research Award to VD via Project sanction No: 2011/20/37P/01/BRNS. PKV is indebted to DAE-BRNS for SRF fellowship. RH, DCJ, and authors acknowledge Barbara and James Palmer Endowment at the Department of Electrical and Computer Engineering, Iowa State University, USA for SEM and magnetization measurements. Authors are grateful to Dr. V. Ganesan, Center director, UGC-DAE Consortium for Scientific Research, Indore for the experimental facilities and extended support. We concede Dr. R Rawat and Mr. Sachin Kumar, UGC-DAE Consortium for Scientific Research, Indore for electrical resistivity/magnetoresistance measurements. RNB and authors thank CIF, Pondicherry University and DAE-BRNS, Govt. of India, for experimental facilities for dielectric measurements. Finally, VD and PKV are thankful to Prof. T. N. Guru Rao, solid state and structural chemistry unit (SSCU), IISC Bangalore for initial help in analyzing XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaylakshmi Dayal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punith Kumar, V., Dayal, V., Hadimani, R.L. et al. Magnetic and electrical properties of Ti-substituted lanthanum bismuth manganites. J Mater Sci 50, 3562–3575 (2015). https://doi.org/10.1007/s10853-015-8916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8916-1

Keywords

Navigation