Skip to main content
Log in

Low-temperature transport in La0.5Ca0.4Li0.1MnO3 manganite in high magnetic fields (1 T ⩽ H ⩽ 14 T)

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The low-temperature minimum of the resistivity of La0.5Ca0.4Li0.1MnO3 manganite in high magnetic fields (up to 14 T) is analyzed quantitatively. It is shown that the behavior of the resistivity and magnetoresistance at low temperatures is successfully described by the model of intergrain spin-polarized tunnel charge transfer. In accordance with this model, the resistivity is expressed in terms of the correlation function of magnetizations of neighboring grains. The expression for the temperature- and magnetic-field dependences of this correlator, derived in [31], is thoroughly analyzed and applied for the polycrystalline manganite sample under investigation. The main parameters of the chosen model are obtained from analysis of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ziese, Rep. Progr. Phys. 65, 143 (2002).

    Article  ADS  Google Scholar 

  2. K. Dorr, J. Phys. D: Appl. Phys. 39, R125 (2006).

  3. N. V. Volkov, Phys. Usp. 55, 250 (2012).

    Article  ADS  Google Scholar 

  4. V. N. Krivoruchko, A. I. D’yachenko, and V. Yu. Tarenkov, Low Temp. Phys. 39, 211 (2013).

    Article  ADS  Google Scholar 

  5. H. Y. Hwang, S.-W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).

    Article  ADS  Google Scholar 

  6. P. Dey and T. K. Nath, Phys. Rev. B 73, 214425 (2006).

    Article  ADS  Google Scholar 

  7. M. A. Lopez-Quintela, L. E. Hueso, and J. Rivas, Nanotechnology 14, 212 (2003).

    Article  ADS  Google Scholar 

  8. A. Sadhu and S. Bhattacharyya, Chem. Mater. 26, 1702 (2014).

    Article  Google Scholar 

  9. S. K. Giri and T. K. Nath, J. Nanosci. Nanotechnol. 14, 1209 (2014).

    Article  Google Scholar 

  10. L. Balcells, J. Fontcuberta, B. Martinez, and X. Obradors, Phys. Rev. B 58, R14697 (1998).

    Article  ADS  Google Scholar 

  11. E. Rozenberg, M. Auslender, I. Felner, and G. Gorodetsky, J. Appl. Phys. 88, 2578 (2000).

    Article  ADS  Google Scholar 

  12. M. I. Auslender, E. Rozenberg, A. E. Kar’kin, B. K. Chaudhuri, and G. Gorodetsky, J. Alloys Compd. 326, 81 (2001).

    Article  Google Scholar 

  13. M. Auslender, A. E. Kar’kin, E. Rozenberg, and G. Gorodetsky, J. Appl. Phys. 89, 6639 (2001).

    Article  ADS  Google Scholar 

  14. A. G. Gamzatov, A. B. Batdalov, O. V. Mel’nikov, and O. Yu. Gorbenko, J. Low Temp. Phys. 35, 214 (2009).

    Article  Google Scholar 

  15. S. Das and T. K. Dey, Bull. Mater. Sci. 29, 633 (2006).

    Article  Google Scholar 

  16. Y. Xu, J. Zhang, G. Cao, C. Jing, and S. Cao, Phys. Rev. B 73, 224410 (2006).

    Article  ADS  Google Scholar 

  17. G. Lalitha and P. Venugopal Reddy, J. Alloys Compd. 494, 476 (2010).

    Article  Google Scholar 

  18. M. Garcia-Hernandez, F. Guinea, A. de Andres, J. L. Martinez, C. Prieto, and L. Vazquez, Phys. Rev. B 61, 9549 (2000).

    Article  ADS  Google Scholar 

  19. P. Li, S. Yuan, X. Wang, Y. Wang, Z. Tian, J. He, S. Yuan, K. Liu, S. Ying, and C. Wang, Solid State Commun. 146, 514 (2008).

    Article  ADS  Google Scholar 

  20. K. A. Shaikhutdinov, S. V. Semenov, D. A. Balaev, M. I. Petrov, and N. V. Volkov, Phys. Solid State 51, 778 (2009).

    Article  ADS  Google Scholar 

  21. T. Okuda, T. Kimura, and Y. Tokura, Phys. Rev. B 60, 3370 (1999).

    Article  ADS  Google Scholar 

  22. J. Zhang, Y. Xu, S. Cao, G. Cao, Y. Zhang, and C. Jing, Phys. Rev. B 72, 054410 (2005).

    Article  ADS  Google Scholar 

  23. M. Battabyal and T. K. Dey, Solid State Commun. 131, 337 (2004).

    Article  ADS  Google Scholar 

  24. E. Rozenberg, J. Appl. Phys. 115, 036101 (2014).

    Article  ADS  Google Scholar 

  25. E. Rozenberg and M. I. Auslender, J. Phys.: Condens. Matter 14, 8755 (2002).

    ADS  Google Scholar 

  26. K. Das, B. Satpati, and I. Das, RSC Adv. 5, 27338 (2015).

    Google Scholar 

  27. Y. Jin, X.-L. Qian, B. Lu, S.-X. Caoa, and J.-C. Zhang, RSC Adv. 5, 2354 (2015).

    Article  Google Scholar 

  28. J. Kondo, Progr. Theor. Phys. 32, 37 (1964).

    Article  ADS  Google Scholar 

  29. P. Raychaudhuri, K. Sheshadri, P. Taneja, S. Bandyopadhyay, P. Ayyub, A. K. Nigam, R. Pinto, S. Chaudhary, and S. B. Roy, Phys. Rev. B 59, 13919 (1999).

    Article  ADS  Google Scholar 

  30. J. S. Helman and B. Abeles, Phys. Rev. Lett. 37, 1429 (1976).

    Article  ADS  Google Scholar 

  31. O. Ciftja, M. Luban, M. Auslender, and J. H. Luscombe, Phys. Rev. B 60, 10122 (1999).

    Article  ADS  Google Scholar 

  32. R. Li, W. Tong, L. Pi, and Y. Zhang, J. Magn. Magn. Mater. 355, 276 (2014).

    Article  ADS  Google Scholar 

  33. A. O. Sboichakov, A. L. Rakhmanov, K. I. Kugel’, M. Yu. Kagan, I. V. Brodskii, J. Exp. Theor. Phys. 95, 753 (2002).

    Article  ADS  Google Scholar 

  34. T. Zhang, T. F. Zhou, T. Qian, and X. G. Li, Phys. Rev. B 76, 174415 (2007).

    Article  ADS  Google Scholar 

  35. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. 81, 1953 (1998).

    Article  ADS  Google Scholar 

  36. A. K. Kar, A. Dhar, S. K. Ray, B. K. Mathur, D. Bhattacharya, and K. L. Chopra, J. Phys.: Condens. Matter 10, 10795 (1998).

    ADS  Google Scholar 

  37. P. Lampen, A. Puri, M.-H. Phan, and H. Srikanth, J. Alloys Compd. 512, 94 (2012).

    Article  Google Scholar 

  38. J. Inoue and S. Maekawa, Phys. Rev. B 53, R11927 (1996).

    Article  ADS  Google Scholar 

  39. M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature 399, 560 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Gamzatov.

Additional information

Original Russian Text © A.G. Gamzatov, T.A. Gadzhimuradov, Renwen Li, Li Pi, Yuheng Zhang, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 1, pp. 172–180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamzatov, A.G., Gadzhimuradov, T.A., Li, R. et al. Low-temperature transport in La0.5Ca0.4Li0.1MnO3 manganite in high magnetic fields (1 T ⩽ H ⩽ 14 T). J. Exp. Theor. Phys. 122, 151–158 (2016). https://doi.org/10.1134/S1063776116010015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116010015

Keywords

Navigation