Skip to main content

Advertisement

Log in

Improved thermal stability and oxidation resistance of electrodeposited NiCrP amorphous alloy coatings

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Amorphous NiP and NiCrP alloy coatings were prepared on copper substrates by electrodeposition. The thermal stability of the obtained coatings were evaluated by the onset temperature of phase transformation identified with differential scanning calorimetry measurements, and their high temperature oxidation resistances were characterized by the oxidation kinetics curve and the oxidation activation energy. The mechanism of the doping effect of Cr element on crystallization temperature and oxidation resistance of the alloy coatings were discussed based on X-ray diffraction analysis. The results show that the crystallization temperature of NiP amorphous alloy was \(344^{\circ }\hbox {C}\), and the oxidation activation energy was calculated to be \(1.54 \times 10^{\mathrm {3}}\hbox { J mol}^{\mathrm {-1}}\). As for NiCrP alloy coating with a Cr content of 1.8 wt%, the crystallization temperature increased to \(403.8^{\circ }\hbox {C}\) and the calculated oxidation activation energy was \(3.53 \times 10^{\mathrm {4}}\hbox { J mol}^{\mathrm {-1}}\), 2.29 times higher than the NiP coating. The remarkably enhanced high-temperature oxidation resistance of NiCrP alloy coating can be attributed to the compact metal oxide film formed on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brenner A and Riddel G 1964 J. Res. Natl. Bur. Stand.37 1

    Google Scholar 

  2. Brenner A and Riddel G 1974 J. Res. Natl. Bur. Stand.39 385

    Article  Google Scholar 

  3. Li H, Chen H and Dong S 1998 Appl. Surf. Sci.125 115

    Article  CAS  Google Scholar 

  4. Novakovic J, Vassiliou P and Samara K 2006 Surf. Coat.Technol.201 895

    Article  CAS  Google Scholar 

  5. Song G-M, Wu Y and Xu Q 2010 J. Power Sources195 3913

    Article  CAS  Google Scholar 

  6. Wang A, Zhao C and He A 2016 J. Alloys Compd.656 729

    Article  CAS  Google Scholar 

  7. Xie J, Yang C and Duan M 2018 Ceram. Int.44 5459

    Article  CAS  Google Scholar 

  8. Honghong S and Jiaming J 2002 Trans. Chin. Soc. Agric. Mach.1 29

    Google Scholar 

  9. Myshkin N K, Grigoriev A Y and Gutsev D M 2013 Trans. Tech. Publ.527 92

    CAS  Google Scholar 

  10. Yang Q, Lv C and Huang Z 2018 Int. J. Hydrog. Energy43 7872

    Article  CAS  Google Scholar 

  11. Yu Y D, Wei G Y and Guo H F 2012 Surf. Eng.28 30

    Article  CAS  Google Scholar 

  12. Balaraju J N, Manikandanath N T and Grips V K W 2012 Surf. Coat. Technol.206 2682

    Article  CAS  Google Scholar 

  13. Hou P Y and Stringer J 1987 J. Electrochem. Soc.134 1836

    Article  CAS  Google Scholar 

  14. Hussey R J and Graham M J 1996 Oxid. Met.45 349

    Article  CAS  Google Scholar 

  15. Wang C Y, Zhou Y M and Zhang F L 2009 J. Alloys Compd.476 884

    Article  CAS  Google Scholar 

  16. Wu N, Li Y and Wang J 2012 J. Mater. Process. Technol.212 794

    Article  CAS  Google Scholar 

  17. Zhang B P, Habazaki H and Kawashima A 1991 Corros. Sci.32 433

    Article  CAS  Google Scholar 

  18. Kumar P S and Nair P K 1996 J. Mater. Process. Technol.56 511

    Article  Google Scholar 

  19. Wang Y and Lu K 2001 Sci. China Ser. E (Tech. Sci.)44 33

    Article  CAS  Google Scholar 

  20. Choi B Y, Liang J and Gao W 2005 Met. Mater. Int.11 499

    Article  CAS  Google Scholar 

  21. Erlinda V O, Daniel O B, Daniel E B, Silvina E F and Pablo R D 2017 Environ. Sci. Pollut. Res.24 27366

    Article  Google Scholar 

  22. Suwanwatana W, Yarlagadda S and Gillespie J J W 2003 J. Mater. Sci.38 565

    Article  CAS  Google Scholar 

  23. Lai Z H, Wu Y K and Guo K X 1984 Acta Phys. Sin.33 1182

    CAS  Google Scholar 

  24. Maeda K, Ikari T and Akashi Y 1994 J. Mater. Sci.29 1449

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Laboratory Independent Research funding support project of China (Grant no. 20181-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J K Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y.Q., Yu, J.K., Yang, H.B. et al. Improved thermal stability and oxidation resistance of electrodeposited NiCrP amorphous alloy coatings. Bull Mater Sci 43, 98 (2020). https://doi.org/10.1007/s12034-020-2067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2067-y

Keywords

Navigation