Skip to main content
Log in

Accurate electrical resistance measurement of the crystallization kinetics of amorphous alloys

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

An accurate four-line ac electrical resistance measurement (ERM) apparatus was developed. By using the ERM the crystallization kinetics of amorphous Ni80P20, FeZr2, Fe86B14 alloys were investigated. The experimental results show that the ERM can identify the early stage of crystallization in amorphous alloys. The ERM detects a crystallization temperature range obviously wider than the DSC does, indicating that the ERM is more sensitive to the structure evolution in crystallization. For the eutectic or polymorphic crystallization, three distinct processes can be identified from the measured resistance variation: (i) crystal nucleation, (ii) subsequent growth of crystal nuclei, and (iii) coarsening of the crystallites. In the early stage of the primary crystallization, the ERM results reflect the nucleation information as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luborsky, F. E., Amorphous Metallic Alloys, London-Frome: Butterworth & Co (Publishers) Ltd., 1983: 144–168.

    Google Scholar 

  2. Cahn, R. W., Haasen, P., Physical Metallurgy, Amsterdam: North-Holland Physics Publ., 1983: 1825.

    Google Scholar 

  3. Ranganathan, S., Vonheimendahl, M., The three activation energies with isothermal transformations: application to metallic glasses, J. Mater. Sci., 1981, 16: 2401.

    Article  Google Scholar 

  4. Vonheimendalh, M., Kuglstatter, G., The activation energies of crystallization in the amorphous alloy metglass 2826A, J. Mater. Sci., 1981, 16: 2405.

    Article  Google Scholar 

  5. Christian, J. W., Transformation in Metals and Alloys, Oxford: Pergamon, 1975.

    Google Scholar 

  6. Yinnon, H., Uhlmann, D. H., Applications of thermoanalytical techniques to the study of crystallization kinetics in glassforming liquids, part I: theory., J. Non-Crys. Solids, 1983, 54: 253.

    Article  Google Scholar 

  7. Lu, K., Lück, R., Predel, B., The temperature vs time transformation (T-T-T) diagram for a transition from the amorphous to the nanocrystalline state, Acta Metall. Mater., 1994, 42: 2303.

    Article  Google Scholar 

  8. Kelton, K. F., Spaepen, F., A study of the devitrification of Pd82Si18 over a wide temperature range, Acta Metall., 1985, 3: 455.

    Google Scholar 

  9. Altounian, Z., Volkert, C. A., Strom-Olsen, J. O., Crystallization characteristics of Fe-Zr metallic glasses from Fe43Zr57 to Fe20Zr80, J. Appl. Phys., 1985, 57: 1777.

    Article  Google Scholar 

  10. Kwong, V., Koo, Y. C., Thorpe, S. J. et al., Crystallization behavior of Al85Y10Ni5 by isochronal and isothermal annealing, Acta Metall. Mater., 1991, 39: 1563.

    Article  Google Scholar 

  11. Jáskiewicz, P., Method to study crystallization kinetics by electrical resistivity, Mater. Sci. Forum, 1998, 269-272: 743.

    Article  Google Scholar 

  12. Hofstetter, W., Sassik, H., Grossinger, R. et al., Determination of the onset of crystallization of amorphous materials using defferent methods, Mater. Sci. Eng., 1997, A226–228: 213.

    Google Scholar 

  13. Schulz, R., Samwer, K., Johnson, W. L., Kinetics of phase separation in Cu50Zr50 metallic glasses, J. Non-Crys. Solids, 1984, 61&62: 997.

    Article  Google Scholar 

  14. Smits, F. M., Measurement of sheet resistivities with the four-point probe, Bell System Technical Journal 1958, 37: 711.

    Google Scholar 

  15. Cohen, R. L., West, K. W., Characterization of metals and alloys by electrical resistivity measurements, Material Evaluation, 1983, 41: 1074.

    Google Scholar 

  16. Kelton, K. F., Holzer, J. C., Apparatus forin-situ measurements of changes in the electrical resistivity accompanying phase changes in metastable metallic alloys, Rew. Sci. Instru., 1988, 59: 347.

    Article  Google Scholar 

  17. Muir, W. B., Strom-Olsen, J. O., A sensitive ac difference method for electron transport measurements, J. Phys. E: Sci. Instru., 1976, 9: 163.

    Article  Google Scholar 

  18. Lu, K., Wang, J. T., Relationship between crystallization temperature and pre-existing nuclei in amorphous Ni-P alloys, Mater. Sci. Eng., 1988, 97: 399.

    Article  Google Scholar 

  19. Kissinger, H. E., Reaction kinetics in differential thermal analysis, Anal. Chem., 1957, 29: 1702.

    Article  Google Scholar 

  20. Wang, J. T., Di L. M., Li, S. L. Z., Phys. Chem., 1987, 2: 383.

    Google Scholar 

  21. Lu, K., Wang, J. T., Crystallization kinetics of Ni-P glass activation energies for nucleation and growth of nuclei, J. Mater. Sci., 1988, 23: 3001.

    Article  Google Scholar 

  22. Hamlyn-Harris, J. H., Stjohn, D. H., Sood, D. K., The thermal stability of Ni-11 wt% P metallic glass, J. Mater. Sci., 1990, 25: 3008.

    Article  Google Scholar 

  23. Lu, K., Wei, W. D., Wang, J. T., Grain growth kinetics and interfacial energies in nanocrystalline Ni-P alloys, J. Appl. Phys., 1991, 69: 7345.

    Article  Google Scholar 

  24. Blank-Bewersdorf, W., Koester, U., Mater. Sci. Eng., 1988, 9: 313.

    Google Scholar 

  25. Lu, K., Zhang, X. H., Electrical resistance measurements for identification of crystal nucleation and growth in amorphous solids: a case study, to be published in Phil. Mag. Letters, 2000.

  26. Lu, K., Grain growth processes in nanocrystalline materials studied by differential scanning calorimetry, Scripta Metall. Mater., 1991, 25: 2047.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Ke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Lu, K. Accurate electrical resistance measurement of the crystallization kinetics of amorphous alloys. Sci. China Ser. E-Technol. Sci. 44, 33–41 (2001). https://doi.org/10.1007/BF02916723

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916723

Keywords

Navigation