Skip to main content

Advertisement

Log in

Synthesis and electrochemical properties of Co-doped \(\hbox {ZnMn}_{2}\hbox {O}_{4}\) hollow nanospheres

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Spinel structure Co-doped \(\hbox {ZnMn}_{{2}}\hbox {O}_{{4}}\) nanocrystals were successfully synthesized by a hydrothermal method. The effects of Co-doping concentration on the structure and electrochemical properties of the samples were investigated. The experimental results manifest that all samples exhibit a single-phase with a tetragonal structure, and morphologies are regular hollow microspheres. Cyclic voltammetry curves for all samples are similar to a rectangular shape with symmetric nature and no obvious redox peak. Galvanostatic charge–discharge curves were triangular and symmetric. Impedance spectra revealed that \(\hbox {Zn}_{1-x}\hbox {Co}_{{x}}\hbox {Mn}_{{2}}\hbox {O}_{{4}}\) possess low resistance. Better electrochemical properties of the \(\hbox {ZnMn}_{{2}}\hbox {O}_{{4}}\) electrode could be obtained when the Co-doping ratio is 0.3. \(\hbox {Zn}_{0.7}\hbox {Co}_{0.3}\hbox {Mn}_{{2}}\hbox {O}_{{4}}\) exhibits much higher specific capacitance (\(306\hbox { F g}^{-1}\)) at a scan rate of \(5\hbox { mV s}^{-1}\), and shows excellent cycling stability and retains 98.2% of its initial capacitance after 1000 cycles. The enhanced capacitive performance in this work can be attributed to the incorporation of Co ions doped into the \(\hbox {ZnMn}_{{2}}\hbox {O}_{{4}}\) host lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li Y, Kong L-B, Liu M-C, Zhang W B and Kang L 2017 Mater. Lett. 186 289

    Article  CAS  Google Scholar 

  2. Wu H, Wu G, Ren Y, Li X and Wang L 2016 Chem. Eur. J. 22 8864

    Article  CAS  Google Scholar 

  3. Wei Y, Chen H, Jiang H, Wang B, Liu H, Zhang Y et al 2019 ACS Sustain. Chem. Eng. 7 7823

    Article  CAS  Google Scholar 

  4. Wang F, Yang H, Zhang H and Jiang J 2018 J. Mater. Sci.: Mater. Electron. 29 1304

    CAS  Google Scholar 

  5. Zheng C, Yang H, Cui Z, Zhang H and Wang X 2017 Nanoscale Res. Lett. 12 608

    Article  Google Scholar 

  6. Huang M, Zhang Y, Li F, Zhang L, Wen Z and Liu Q 2014 J. Power Sources 252 98

    Article  CAS  Google Scholar 

  7. Wu H, Wu G, Ren Y, Yang L, Wang L and Li X 2015 J. Mater. Chem. C 3 7677

    Article  CAS  Google Scholar 

  8. Zhao L, Li X and Zhao J 2013 Appl. Surf. Sci. 268 274

    Article  CAS  Google Scholar 

  9. Bhagwan J, Kumar N, Yadav K L and Sharma Y 2018 Solid State Ionics 321 75

    Article  CAS  Google Scholar 

  10. Zou J, Liu B, Liu H, Ding Y, Xin T and Wang Y 2018 Mater. Res. Bull. 107 468

    Article  CAS  Google Scholar 

  11. Abdollahifar M, Huang S-S, Lin Y-H, Lin Y C, Shih B Y and Sheu H S 2018 J. Power Sources 378 90

    Article  CAS  Google Scholar 

  12. Ameri B, Davarani S S H, Moazami H R and Darjazi H 2017 J. Alloys Compd. 720 408

    Article  CAS  Google Scholar 

  13. Wang H, Li Z, Xu J, Zhang Y, Yang L and Qiu W 2015 J. Wuhan Univ. Technol.: Mater. Sci. Ed. 30 1159

  14. Courtel F M, Duncan H, Abu-Lebdeh Y and Davidson I-J 2011 J. Mater. Chem. 21 10206

    Article  CAS  Google Scholar 

  15. Ren N, Jiu H, Jiang L, Zhang Q, Yu S, Gao Y et al 2018 J. Alloys Compd. 740 28

    Article  CAS  Google Scholar 

  16. Zhang L-X, Wang Y-L, Jiu H-F, Qiu H and Wang H 2015 Ceram. Int. 41 9655

    Article  CAS  Google Scholar 

  17. Zhang T, Gao Y, Yue H, Qiu H, Guo Z, Wei Y et al 2016 Electrochim. Acta 198 84

    Article  CAS  Google Scholar 

  18. Zhu X, Wei Z, Zhao W, Zhang X, Zhang L and Wang X 2018 J. Electron. Mater. 47 6428

    Article  CAS  Google Scholar 

  19. Liu Q, Zhang Z, Liu B and Xia H 2018 Appl. Catal. B: Environ. 237 855

    Article  CAS  Google Scholar 

  20. Gherbi R, Bessekhouad Y and Trari M 2016 J. Phys. Chem. Solids 89 69

    Article  CAS  Google Scholar 

  21. Gherbi R, Bessekhouad Y and Trari M 2016 J. Alloys Compd. 655 188

    Article  CAS  Google Scholar 

  22. Courtel F M, Abu-Lebdeh Y and Davidson I J 2012 Electrochim. Acta 71 123

    Article  CAS  Google Scholar 

  23. Li P, Liu J, Liu Y, Wang Y, Li Z, Wu W et al 2015 Electrochim. Acta 180 164

    Article  CAS  Google Scholar 

  24. Lin X X, Zhu Y F and Shen W Z 2009 J. Phys. Chem. C 113 1812

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51261015), the Natural Science Foundation of Gansu Province, China (No. 1308RJZA238) and the open Foundation of State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology) (No. SYSJJ2018-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Wei, Z., Ma, L. et al. Synthesis and electrochemical properties of Co-doped \(\hbox {ZnMn}_{2}\hbox {O}_{4}\) hollow nanospheres. Bull Mater Sci 43, 4 (2020). https://doi.org/10.1007/s12034-019-1970-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1970-6

Keywords

Navigation