Skip to main content
Log in

Hollow structured Sn-Co nanospheres by galvanic replacement reaction as high-performance anode for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Hollow Sn-Co nanospheres have been fabricated by galvanic replacement reaction. In particular, the hollow resultants with different shell thickness and void space can be obtained using sacrificial templates with different sizes. The structural evolution of Sn-Co hollow microspheres and structure changes during charge/discharge process were studied using XRD, SEM, and TEM. As an anodic material, the hollow resultants with thin shell and relatively large void space exhibited a good reversible capacity of 502 mAh g−1 at a current density of 100 mA g−1 and a coulomb efficiency over 99 % after 100 cycles. The contributions of the hollow structure and the inactive Co element to electrochemical performance were verified by galvanostatic charge/discharge cycling, electrochemical impedance spectroscope, and TEM measurements. A possible mechanism for hollow structure with different shell thickness to alleviate the volume change was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  3. Li H, Wang ZX, Chen LQ, Huang XJ (2009) Research in advanced materials for Li-ion batteries. Adv Mater 21:4593–4607

    Article  Google Scholar 

  4. Rahul M, Rahul K, Toh-Ming L, Nikhil K (2012) Nanostructured electrodes for high-power lithium ion battery. Nano Energy 1:518–533

    Article  Google Scholar 

  5. Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR (2001) Colossal reversible volume changes in lithium alloys. Electrochem Solid ST 4:A137–A140

    Article  CAS  Google Scholar 

  6. Dahn JR, Mar RE, Abouzeid A (2006) Combinatorial study of Sn1-xCox (0<x<0.6) and [Sn0.55Co0.45]1-yCy (0<y<0.5) alloy negative electrode materials for Li-ion batteries. J Electrochem Soc 153:A361–A365

    Article  CAS  Google Scholar 

  7. Mackay DT, Janish MT, Sahaym U, Kotula PG, Jungjohann KL, Carter CB, Norton MG (2014) Template-free electrochemical synthesis of tin nanostructures. J Mater Sci 49:1476–1483

    Article  CAS  Google Scholar 

  8. Zheng Y, Yang J, Nuli YN, Wang JL (2007) Nano-tin alloys dispersed in oxides for lithium storage materials. J Power Sources 174:624–627

    Article  CAS  Google Scholar 

  9. Hassoun J, Derrien G, Panero S, Scrosati B (2008) A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20:3169–3175

    Article  CAS  Google Scholar 

  10. Ferguson PP, Todd ADW, Dahn JR (2008) Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries. Electrochem Commun 10:25–31

    Article  CAS  Google Scholar 

  11. Wang F, Zhao MS, Song XP (2008) Nano-sized SnSbCux alloy anodes prepared by co-precipitation for Li-ion batteries. J Power Sources 175:558–563

    Article  CAS  Google Scholar 

  12. Todd ADW, Mar RE, Dahn JR (2007) Tin-transition metal-carbon systems for lithium-ion battery negative electrodes. J Electrochem Soc 154:A597–A604

    Article  CAS  Google Scholar 

  13. Zhao HP, Jiang CY, He XM, Ren JG, Wan CR (2007) Advanced structures in electrodeposited tin base anodes for lithium ion batteries. Electrochim Acta 52:7820–7826

    Article  CAS  Google Scholar 

  14. Simonin L, Lafont U, Kelder EM (2008) SnSb micron-sized particles for Li-ion batteries. J Power Sources 180:859–863

    Article  CAS  Google Scholar 

  15. Wen ZG, Zheng F, Jiang ZR, Li MX, Luo YX (2013) Solvothermal synthesis of solid and hollow CoO nanospheres and their electrochemical properties in lithium-ion battery. J Mater Sci 48:342–347

    Article  CAS  Google Scholar 

  16. Yu L, Wu HB, Lou XW (2012) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25:2296–2300

    Article  Google Scholar 

  17. Wang JY, Yang NL, Tang HJ, Dong ZH, Jin Q, Yang M, Kisailus D, Zhao HJ, Tang ZY, Wang D (2013) A accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem Int Ed 52:6417–6420

    Article  CAS  Google Scholar 

  18. Wang B, Chen JS, Wu HB, Wang ZY, Lou XW (2011) Quasiemulsion-templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc 133:17146–17148

    Article  CAS  Google Scholar 

  19. Liu RQ, Li N, Xia GF, Li DY, Wang C, Xiao N, Tian D, Wu G (2013) Assembled hollow and core-shell SnO2 microspheres as anode materials for Li-ion batteries. Mater Lett 93:243–246

    Article  CAS  Google Scholar 

  20. Fang ZB, Huang JJ, He WJ, Zhang XS, Wu YP, Qing JW (2013) Electrochemical performance of SnO2-Fe2O3 hollow spheres prepared by solid acid template method. Electrochim Acta 109:454–460

    Article  CAS  Google Scholar 

  21. Lou XW, Archer LA, Yang ZC (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019

    Article  CAS  Google Scholar 

  22. Lai XY, Halperta JE, Wang D (2012) Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci 5:5604–5618

    Article  CAS  Google Scholar 

  23. Liu J, Xue DF (2010) Hollow nanostructured anode materials for Li-ion batteries. Nanoscale Res Lett 5:1525–1534

    Article  CAS  Google Scholar 

  24. Wang ZY, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24:1903–1911

    Article  CAS  Google Scholar 

  25. Lou XW, Yuan CL, Archer LA (2007) Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization. Small 3:261–265

    Article  CAS  Google Scholar 

  26. Lou XW, Yuan CL, Archer LA (2007) Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv Mater 19:3328–3332

    Article  CAS  Google Scholar 

  27. Hu J, Chen M, Fang XS, Wu LW (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40:5472–5491

    Article  CAS  Google Scholar 

  28. Fan HJ, Gosele U, Zacharias M (2007) Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3:1660–1671

    Article  CAS  Google Scholar 

  29. Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  CAS  Google Scholar 

  30. Cao HL, Qian XF, Wang C, Ma XD, Yin J, Zhu ZK (2005) High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J Am Chem Soc 127:16024–16025

    Article  CAS  Google Scholar 

  31. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  32. Xiong YJ, Wiley B, Chen JY, Li ZY, Yin YD, Xia YN (2005) Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew Chem Int Ed 44:7913–7917

    Article  CAS  Google Scholar 

  33. Sun YG, Mayers BT, Xia YN (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2:481–485

    Article  CAS  Google Scholar 

  34. Oh MH, Yu T, Yu SH, Lim B, Ko KT, Willinger MG, Seo DH, Kim BH, Cho MG, Park JH (2013) Galvanic replacement reactions in metal oxide nanocrystals. Science 340:964–968

    Article  CAS  Google Scholar 

  35. Xia XH, Wang Y, Ruditskiy A, Xia YN (2013) 25th Anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv Mater 25:6313–6333

    Article  CAS  Google Scholar 

  36. Fan X, Tang XN, Ma DQ, Bi P, Jiang AN, Zhu J, Xu XH (2014) Novel hollow Sn-Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction. J Solid State Electrochem 18:1137–1145

    Article  CAS  Google Scholar 

  37. Batzill M, Koel BE (2004) Silver on Pt (100)-room temperature growth and high temperature alloying. Surf Sci 553:50–60

    Article  CAS  Google Scholar 

  38. Sun YG, Xia YN (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126:3892–3901

    Article  CAS  Google Scholar 

  39. Zeng HC (2006) Synthesis architecture of interior space for inorganic nanostructures. J Mater Chem 16:649–662

    Article  CAS  Google Scholar 

  40. Park CM, Kim JH, Kim H, Sohn HJ (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141

    Article  CAS  Google Scholar 

  41. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  42. Tan CH, Qi GW, Li YP, Guo J, Wang X, Kong DL, Wang HJ, Zhang SY (2013) Performance enhancement of Sn-Co alloys for lithium-ion battery by electrochemical dissolution treatment. J Alloys Compd 574:206–211

    Article  CAS  Google Scholar 

  43. Tamura N, Ohshita R, Fujimoto M, Kamino M, Fujitani S (2003) Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries. J Electrochem Soc 150:A679–A683

    Article  CAS  Google Scholar 

  44. Rhodes KJ, Meisner R, Kirkham M, Dudney N, Daniel C (2012) In Situ XRD of Thin Film Tin Electrodes for Lithium Ion Batteries. J Electrochem Soc 159:A294–A299

    Article  CAS  Google Scholar 

  45. Chen ZX, Qian JF, Ai XP, Cao YL, Yang HX (2009) Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries. J Power Sources 189:730–732

    Article  CAS  Google Scholar 

  46. Amadei I, Panero S, Scrosati B, Cocco G, Schiffini L (2005) The Ni3Sn4 intermetallic as a novel electrode in lithium cells. J Power Sources 143:227–230

    Article  CAS  Google Scholar 

  47. Zhang JJ, Xia YY (2006) Co-Sn alloys as negative electrode materials for rechargeable lithium batteries. J Electrochem Soc 153:A1466–A1471

    Article  CAS  Google Scholar 

  48. Yang CG, Zhang DW, Zhao YB, Lu YH, Wang L, Goodenough JB (2011) Nickel foam supported Sn-Co alloy film as anode for lithium ion batteries. J Power Sources 196:10673–10678

    Article  CAS  Google Scholar 

  49. Ui K, Kikuchi S, Jimba Y, Kumagai N (2011) Preparation of Co-Sn alloy film as negative electrode for lithium secondary batteries by pulse electrodeposition method. J Power Sources 196:3916–3920

    Article  CAS  Google Scholar 

  50. Du Z, Zhang S (2011) Enhanced electrochemical performance of Sn-Co nanoarchitectured electrode for lithium ion batteries. J Phys Chem C 115:23603–23609

    Article  CAS  Google Scholar 

  51. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397

    Article  CAS  Google Scholar 

  52. Beaulieu LY, Beattie SD, Hatchard TD, Dahn JR (2003) The electrochemical reaction of lithium with tin studied by in situ AFM. J Electrochem Soc 150:A419–A424

    Article  CAS  Google Scholar 

  53. Xue LJ, Xu YF, Huang L, Ke FS, He Y, Wang YX, Wei GZ, Li JT, Sun SG (2011) Lithium storage performance and interfacial processes of three dimensional porous Sn-Co alloy electrodes for lithium-ion batteries. Electrochim Acta 56:5979–5987

    Article  CAS  Google Scholar 

  54. Groult H, El Ghallali H, Barhoun A, Briot E, Julien CM, Lantelme F, Borensztjan S (2011) Study of Co-Sn and Ni-Sn alloys prepared in molten chlorides and used as negative electrode in rechargeable lithium battery. Electrochim Acta 56:2656–2664

    Article  CAS  Google Scholar 

  55. Yang R, Huang J, We Z, Lai WZ, Zhang XZ, Zheng J, Li XG (2010) Bubble assisted synthesis of Sn–Sb–Cu alloy hollow nanostructures and their improved lithium storage properties. J Power Sources 195:6811–6816

    Article  CAS  Google Scholar 

  56. Fan XY, Ke FS, Wei GZ, Huang L, Sun SG (2009) Lithiation/delithiation performance of Sn–Co alloy anode using rough Cu foil as current collector. J Solid State Electrochem 13:1849–1858

    Article  CAS  Google Scholar 

  57. Fan XY, Ke FS, Wei GZ, Huang L, Sun SG (2009) Sn-Co alloy anode using porous Cu as current collector for lithium ion battery. J Alloys Compd 476:70–73

    Article  CAS  Google Scholar 

  58. He JC, Zhao HL, Wang MW, Jia XD (2010) Preparation and characterization of Co-Sn-C anodes for lithium-ion batteries. Mater Sci Eng B 171:35–39

    Article  CAS  Google Scholar 

  59. Fan Q, Chupas PJ, Whittingham MS (2007) Characterization of amorphous and crystalline tin-cobalt anodes. Electrochem Solid ST 10:A274–A278

    Article  CAS  Google Scholar 

  60. Choi N-S, Yan Y, Cui Y, Cho J (2011) One dimentioal Si/Sn based nanowires and nanotubes for lithium-ion energy storage materials. J Master Chem 21:9825–9840

    Article  CAS  Google Scholar 

  61. Mahood N, Zhang C, Jiang J, Liu F, Hou Y (2013) Multifunctional CoS4/Graphene composites for lithium ion battery and oxygen reduction reaction. Chem-Eur J 19:5183–51890

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51143009 and 51273145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, A., Fan, X., Zhu, J. et al. Hollow structured Sn-Co nanospheres by galvanic replacement reaction as high-performance anode for lithium ion batteries. Ionics 21, 2137–2147 (2015). https://doi.org/10.1007/s11581-015-1420-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1420-4

Keywords

Navigation