Skip to main content

Advertisement

Log in

Self-assembled uniform double-shelled Co3V2O8 hollow nanospheres as anodes for high-performance Li-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hollow micro-/nanostructures have achieved great success in the field of renewable battery materials by reducing the volume change and promoting the ion transport. Double-shelled Co3V2O8 hollow nanospheres (CVO-DSS) were synthesized using a facile solvothermal method followed by a thermal treatment in the absence of any surfactant. Meanwhile, two other architectures of hollow nanospheres and nanoparticles were obtained by changing the annealing temperature. Benefiting from the desired hollow structure, the CVO-DSS electrode exhibits excellent lithium storage properties as an anode. It exhibits a reversible discharge capacity of 1210 mAh·g−1 at 200 mA·g−1 after 100 cycles and a satisfactorily high rate capacity of 628 mAh·g−1 after 800 cycles at 5000 mA·g−1. These hollow nanostructures can efficiently enhance the contact area of the electrolyte/electrode interface, promote the diffusion of lithium ions and electrons and slow down the capacity loss during long cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen WS, Yu HP, Lee SY, Wei T, Li J, Fan ZJ. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev. 2018;47(8):2837.

    Article  CAS  Google Scholar 

  2. Jiang J, Li YY, Liu JP, Huang XT, Yuan CZ, Lou XW. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater. 2012;24(38):5166.

    Article  CAS  Google Scholar 

  3. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19.

    Article  CAS  Google Scholar 

  4. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.

    Article  CAS  Google Scholar 

  5. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J. Electrochemical energy storage for green grid. Chem Rev. 2011;111(5):3577.

    Article  CAS  Google Scholar 

  6. Lu Y, Yu L, Wu MH, Wang Y, Lou XW. Construction of complex Co3O4@Co3V2O8 hollow structures from metal–organic frameworks with enhanced lithium storage properties. Adv Mater. 2018;30(1):1702875.

    Article  CAS  Google Scholar 

  7. Yang J, Wu MQ, Gong F, Feng TT, Chen C, Liao JX. Facile and controllable synthesis of solid Co3V2O8 micro-pencils as a highly efficient anode for Li-ion batteries. RSC Adv. 2017;7(39):24418.

    Article  Google Scholar 

  8. Li L, Seng KH, Feng CQ, Liu HK, Guo ZP. Synthesis of hollow GeO2 nanostructures, transformation into Ge@C and lithium storage properties. J Mater Chem A. 2013;1(26):7666.

    Article  CAS  Google Scholar 

  9. Li D, Wang HQ, Liu HK, Guo ZP. A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv Energy Mater. 2016;6(5):1501666.

    Article  CAS  Google Scholar 

  10. Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.

    Article  CAS  Google Scholar 

  11. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.

    Article  CAS  Google Scholar 

  12. Zhang GQ, Lou XW. General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew Chem Int Ed. 2014;126(34):9187.

    Article  Google Scholar 

  13. Wang JL, Pei J, Hua K, Chen DH, Jiao Y, Hu YY, Chen G. Synthesis of Co2V2O7 hollow cylinders with enhanced lithium storage properties using H2O2 as an etching agent. Chem Electro Chem. 2018;5(5):737.

    CAS  Google Scholar 

  14. Zheng H, Zhang Q, Gao H, Sun W, Zhao HM, Feng CQ, Mao JF, Guo ZP. Synthesis of porous MoV2O8 nanosheets as anode material for superior lithium storage. Energy Storage Mater. 2019;22:128.

    Article  Google Scholar 

  15. Gan LH, Deng DR, Zhang YJ, Li G, Wang XY, Jiang L, Wang CR. Zn3V2O8 hexagon nanosheets: a high-performance anode material for lithium-ion batteries. J Mater Chem A. 2014;2(8):2461.

    Article  CAS  Google Scholar 

  16. Sim DH, Rui XH, Chen J, Tan HT, Lim TM, Yazami R, Hng HH, Yan QY. Direct growth of FeVO4 nanosheet arrays on stainless steel foil as high-performance binder-free Li ion battery anode. RSC Adv. 2012;2(9):3630.

    Article  CAS  Google Scholar 

  17. Zhang L, Zhao KN, Luo YZ, Dong YF, Xu WW, Yan MY, Ren WH, Zhou L, Qu LB, Mai LQ. Acetylene black induced heterogeneous growth of macroporous CoV2O6 nanosheet for high-rate pseudocapacitive lithium-ion battery anode. ACS Appl Mater Interfaces. 2016;8(11):7139.

    Article  CAS  Google Scholar 

  18. Lv C, Sun JX, Chen G, Yan CS, Chen DH. Achieving Ni3V2O8 amorphous wire encapsulated in crystalline tube nanostructure as anode materials for lithium ion batteries. Nano Energy. 2017;33:138.

    Article  CAS  Google Scholar 

  19. Yin ZG, Qin JW, Wang W, Cao MH. Rationally designed hollow precursor-derived Zn3V2O8 nanocages as a high-performance anode material for lithium-ion batteries. Nano Energy. 2017;31:367.

    Article  CAS  Google Scholar 

  20. Lu Y, Nai JW, Lou XW. Formation of NiCo2V2O8 yolk–double shell spheres with enhanced lithium storage properties. Angew Chem Int Ed. 2018;57(11):2899.

    Article  CAS  Google Scholar 

  21. Qin ZZ, Pei J, Chen G, Chen DH, Hu YY, Lv C, Bie CF. Design and fabrication of Co3V2O8 nanotubes by electrospinning as a high-performance anode for lithium-ion batteries. New J Chem. 2017;41(13):5974.

    Article  CAS  Google Scholar 

  22. Gong F, Xia DW, Bi C, Yang J, Zeng W, Chen C, Ding YL, Xu ZQ, Liao JX, Wu MQ. Systematic comparison of hollow and solid Co3V2O8 micro-pencils as advanced anode materials for lithium ion batteries. Electrochim Acta. 2018;264:358.

    Article  CAS  Google Scholar 

  23. Gao GX, Lu SY, Dong BT, Xiang Y, Xi K, Ding SJ. Mesoporous Co3V2O8 nanoparticles grown on reduced graphene oxide as a high-rate and longlife anode material for lithium-ion batteries. J Mater Chem A. 2016;4(17):6264.

    Article  CAS  Google Scholar 

  24. Sambandam B, Soundharrajan V, Mathew V, Song JJ, Kim SJ, Jo J, Tung DP, Kim S, Kim J. Metal–organic framework-combustion: a new, cost-effective and one-pot technique to produce a porous Co3V2O8 microsphere anode for high energy lithium ion batteries. J Mater Chem A. 2016;4(38):14605.

    Article  CAS  Google Scholar 

  25. Wu FF, Xiong SL, Qian YT, Yu SH. Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8·nH2O: a new anode material for lithium-ion batteries. Angew Chem. 2015;54(37):10787.

    Article  CAS  Google Scholar 

  26. Yang GZ, Cui H, Yang GW, Wang CX. Self-assembly of Co3V2O8 multilayered nanosheets: controllable synthesis, excellent Li-storage properties and investigation of electrochemical mechanism. ACS Nano. 2014;8(5):4474.

    Article  CAS  Google Scholar 

  27. Zhang Q, Pei J, Chen G, Bie CF, Sun JX, Liu J. Porous Co3V2O8 nanosheets with ultrahigh performance as anode materials for lithium ion batteries. Adv Mater Interfaces. 2017;4(13):1700054.

    Article  CAS  Google Scholar 

  28. Hou LR, Bao RQ, Zhang YR, Sun X, Zhang JY, Dou H, Zhang XG, Yuan CZ. Structure-designed synthesis of yolk–shell hollow ZnFe2O4/C@N-doped carbon sub-microspheres as a competitive anode for high-performance Li-ion batteries. J Mater Chem A. 2018;6(37):17947.

    Article  CAS  Google Scholar 

  29. Wang PX, Zhang Y, Yin YY, Fan LS, Zhang NQ, Sun KN. Anchoring hollow MoO2 spheres on graphene for superior lithium storage. Chem Eng J. 2018;334:257.

    Article  CAS  Google Scholar 

  30. Luo YZ, Xu X, Tian XC, Wei QL, Yan MY, Zhao KG, Xua XM, Mai LQ. Facile synthesis of a Co3V2O8 interconnected hollow microsphere anode with superior high-rate capability for Li-ion batteries. J Mater Chem A. 2016;4(14):5075.

    Article  CAS  Google Scholar 

  31. Wu MQ, Yang J, Chen C, Feng TT, Gong F, Liao JX. Uniform Co3V2O8 microspheres via controllable assembly for high-performance lithium-ion battery anodes. New J Chem. 2018;42(7):4881.

    Article  CAS  Google Scholar 

  32. Wu MZ, Zhang XF, Gao S, Cheng XL, Rong ZM, Xu YM, Zhao H, Huo LH. Construction of monodisperse vanadium pentoxide hollow spheres via a facile route and triethylamine sensing property. CrystEngComm. 2013;15(46):10123.

    Article  CAS  Google Scholar 

  33. Deng JJ, Yu XL, Qin XY, Liu BL, He YB, Li BH, Kang FY. Controlled synthesis of anisotropic hollow ZnCo2O4 octahedrons for high-performance lithium storage. Energy Storage Mater. 2018;11:184.

    Article  Google Scholar 

  34. Wang YH, Wu BH, He XY, Zhang YY, Li H, Peng YY, Wang J, Zhao JB. Synthesis of micro/nanostructured Co9S8 cubes and spheres as high performance anodes for lithium ion batteries. Electrochim Acta. 2017;230:299.

    Article  CAS  Google Scholar 

  35. Jin J, Wu L, Huang SZ, Yan M, Wang HG, Chen LH, Hasan T, Li Y, Su BL. Hierarchy design in metal oxides as anodes for advanced lithium-ion batteries. Small Methods. 2018;2(11):1800171.

    Article  CAS  Google Scholar 

  36. Yu L, Yu XY, Lou XW. The design and synthesis of hollow micro-/nanostructures: present and future trends. Adv Mater. 2018;30(38):1800939.

    Article  CAS  Google Scholar 

  37. Shen LF, Yu L, Yu XY, Zhang XG, Lou XW. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Ed. 2015;54(6):1868.

    Article  CAS  Google Scholar 

  38. Gong F, Xia DW, Zhou Q, Liao JX, Wu MQ. Novel spherical cobalt/nickel mixed-vanadates as high-capacity anodes in lithium ion batteries. J Alloy Compd. 2018;766:442.

    Article  CAS  Google Scholar 

  39. Pan A, Wang Y, Xu W, Nie Z, Liang S, Nie Z, Wang C, Cao G, Zhang JG. High-performance anode based on porous Co3O4 nanodiscs. J Power Sources. 2014;255:125.

    Article  CAS  Google Scholar 

  40. Wu FX, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev. 2020;49(5):1569.

    Article  CAS  Google Scholar 

  41. Liu XL, Cao YC, Zheng H, Chen X, Feng CQ. Synthesis and modification of FeVO4 as novel anode for lithium-ion batteries. Appl Surf Sci. 2017;394:183.

    Article  CAS  Google Scholar 

  42. Zhang Q, Pei J, Chen G, Bie CF, Chen DH, Jiao Y, Rao JC. Co3V2O8 hexagonal pyramid with tunable inner structure as high performance anode materials for lithium ion battery. Electrochim Acta. 2017;238:227.

    Article  CAS  Google Scholar 

  43. Soundharrajan V, Sambandam B, Song J, Kim S, Jo J, Kim S, Lee S, Mathew V, Kim J. Co3V2O8 sponge network morphology derived from metal–organic framework as an excellent lithium storage anode material. ACS Appl Mater Interfaces. 2016;8(13):8546.

    Article  CAS  Google Scholar 

  44. Soundharrajan V, Sambandam B, Song JJ, Kim SJ, Jo J, Duong PT, Kim S, Mathew V, Kim J. Facile green synthesis of a Co3V2O8 nanoparticle electrode for high energy lithium-ion battery applications. J Colloid Inter Sci. 2017;501:133.

    Article  CAS  Google Scholar 

  45. Liu N, Wu H, McDowell MT, Yao Y, Wang CM, Cui Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012;12(6):3315.

    Article  CAS  Google Scholar 

  46. Liu J, Qiao SZ, Chen JS, Lou XW, Xing XR, Lu GQ. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun. 2011;47:12578.

    Article  CAS  Google Scholar 

  47. Lu Y, Yu L, Lou XW. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem. 2018;4(5):972.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21476063), Guizhou Provincial Education Department (No. KY [2018] 031), the Project of Hubei Provincial Science & Technology Department (No. 2018ACA147) and the Open-End Fund for Hubei Key Laboratory of Pollutant Analysis & Reuse Technology (No. PA200104). H. Zheng acknowledges the China Scholarship Council (CSC) for scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan-Qi Feng or Shi-Quan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Chen, X., Yang, Y. et al. Self-assembled uniform double-shelled Co3V2O8 hollow nanospheres as anodes for high-performance Li-ion batteries. Rare Met. 40, 3485–3493 (2021). https://doi.org/10.1007/s12598-021-01713-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01713-4

Keywords

Navigation