Skip to main content
Log in

Microstructure and Electrochemical Properties of ZnMn2O4 Nanopowder Synthesized Using Different Surfactants

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZnMn2O4 (ZMO) nanopowders have been synthesized by a hydrothermal method using different surfactants [cetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG)-400, and Polysorbate-80]. The as-prepared ZnMn2O4 samples exhibited single phase with tetragonal structure, showing honeycomb, spinel microsphere, and flower-cluster morphology, respectively. Cyclic voltammetry curves for all samples presented rectangular shape with symmetric nature and good cycling properties, with no obvious redox peak. Galvanostatic charge–discharge curves were triangular and symmetric. The specific capacitance of the ZnMn2O4 nanopowders gradually decreased with increase of the scanning rate. ZMO-PEG exhibited higher specific capacitance of 191 F g−1 at scan rate of 5 mV s−1 and retained superior large-current cycling stability of 98.4% after 1000 cycles compared with ZMO-CTAB (93.8%) or ZMO-Polysorbate-80 (97.7%). Electrochemical impedance spectroscopy revealed that the ZnMn2O4 nanopowders had low resistance. These results suggest that ZnMn2O4 nanopowders have good capacitance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, L.-B. Kong, M.-C. Liu, W.-B. Zhang, and L. Kang, Mater. Lett. 186, 289 (2017).

    Article  CAS  Google Scholar 

  2. H. Wu, G. Wu, Y. Ren, X. Li, and L. Wang, Chemistry 22, 8864 (2016).

    Article  CAS  Google Scholar 

  3. G.R. Xu, X.P. Min, Q.L. Chen, Y. Wen, A.P. Tang, and H.S. Song, J. Alloys Compd. 691, 1018 (2017).

    Article  CAS  Google Scholar 

  4. T. Zhang, L.-B. Kong, M.-C. Liu, Y.-H. Dai, K. Yan, B. Hu, Y.-C. Luo, and L. Kang, Mater. Des. 112, 88 (2016).

    Article  CAS  Google Scholar 

  5. W. Ma, S. Chen, S. Yang, W. Chen, Y. Cheng, Y. Guo, S. Peng, S. Ramakrishna, and M. Zhu, J. Power Sources 306, 481 (2016).

    Article  CAS  Google Scholar 

  6. M. Huang, Y. Zhang, F. Li, L. Zhang, Z. Wen, and Q. Liu, J. Power Sources 252, 98 (2014).

    Article  CAS  Google Scholar 

  7. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, and X. Li, J. Mater. Chem. C 3, 7677 (2015).

    Article  CAS  Google Scholar 

  8. G.H. Yue, Y.C. Zhao, C.G. Wang, X.X. Zhang, X.Q. Zhang, and Q.S. Xie, Electrochim. Acta 152, 315 (2015).

    Article  CAS  Google Scholar 

  9. H. Wu, G. Wu, and L. Wang, Powder Technol. 269, 443 (2015).

    Article  CAS  Google Scholar 

  10. T. Zhang, Y. Gao, H. Yue, H. Qiu, Z. Guo, Y. Wei, C. Wang, G. Chen, and D. Zhang, Electrochim. Acta 198, 84 (2016).

    Article  CAS  Google Scholar 

  11. L.X. Zhang, Y.L. Wang, H.F. Jiu, H.Y. Qiu, and H.Y. Wang, Ceram. Int. 41, 9655 (2015).

    Article  CAS  Google Scholar 

  12. D. Cai, D. Wang, H. Huang, X. Duan, B. Liu, L. Wang, Y. Liu, Q. Li, and T. Wang, J. Mater. Chem. A 3, 11430 (2015).

    Article  CAS  Google Scholar 

  13. L. Xiao, Y. Yang, J. Yin, Q. Li, and L. Zhang, J. Power Sources 194, 1089 (2009).

    Article  CAS  Google Scholar 

  14. X.X. Lin, Y.F. Zhu, and W.Z. Shen, J. Phys. Chem. C 113, 1812 (2009).

    Article  CAS  Google Scholar 

  15. Z. Wang, J. Zhang, Y. Yang, and Ling, J. Wuhan Univ. Technol. (Mater. Sci. Edn.) 30, 1159 (2015).

    Article  CAS  Google Scholar 

  16. P. Li, J. Liu, Y. Liu, Y. Wang, Z. Li, W. Wu, Y. Wang, L. Yin, H. Xie, and M. Wu, Electrochim. Acta 180, 164 (2015).

    Article  CAS  Google Scholar 

  17. W. Dang, F. Wang, Y. Ding, C. Feng, and Z. Guo, J. Alloys Compd. 690, 72 (2017).

    Article  CAS  Google Scholar 

  18. F.M. Courtel, Y. Abu-Lebdeh, and I.J. Davidson, Electrochim. Acta 71, 123 (2012).

    Article  CAS  Google Scholar 

  19. F. Courtel, H. Duncan, Y. Abulebdeh, and I. Davidson, J. Mater. Chem. 21, 10206 (2011).

    Article  CAS  Google Scholar 

  20. L. Zhao, X. Li, and J. Zhao, Appl. Surf. Sci. 268, 274 (2013).

    Article  CAS  Google Scholar 

  21. A. Sahoo and Y. Sharma, Mater. Chem. Phys. 149, 721 (2015).

    Article  Google Scholar 

  22. R. Gherbi, Y. Bessekhouad, and M. Trari, J. Phys. Chem. Solids 89, 69(9) (2016).

    Article  Google Scholar 

  23. B. Ameri, S.S.H. Davarani, H.R. Moazami, and H. Darjazi, J. Alloys Compd. 720, 5 (2017).

    Article  Google Scholar 

  24. N. Guo, X.Q. Wei, X.L. Deng, and X.J. Xu, Appl. Surf. Sci. 356, 1127 (2015).

    Article  CAS  Google Scholar 

  25. L. Demarconnay, E. Raymundo-Piñero, and F. Béguin, Electrochem. Commun. 1275, 12 (2010).

    Google Scholar 

  26. C. Portet, P.L. Taberna, and P. Simon, Electrochim. Acta 4174, 50 (2005).

    Google Scholar 

  27. G. Zhou, J. Zhu, and Y. Chen, Electrochim. Acta 450, 123 (2014).

    Article  Google Scholar 

  28. K. Qiu, Y. Lu, and D. Zhang, Mesoporous Nano Energy 687, 11 (2015).

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 51261015) and the Natural Science Foundation of Gansu Province, China (No. 1308RJZA238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Wei, Z., Zhao, W. et al. Microstructure and Electrochemical Properties of ZnMn2O4 Nanopowder Synthesized Using Different Surfactants. J. Electron. Mater. 47, 6428–6436 (2018). https://doi.org/10.1007/s11664-018-6544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6544-7

Keywords

Navigation