Skip to main content
Log in

Host Response of Arabidopsis thaliana Interaction with Fungal Endophytes Involves microRNAs

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Plant and fungus interaction is a complex process involving many molecular factors determining the nature of relationship. The enigmatic methodology by which fungal endophytes are able to colonise a plant harmoniously is still inexplicable. Small RNAs have been identified as major regulatory elements under various biotic interactions. However, their role in endophytic plant–fungal interactions remain to be elucidated. Therefore, transcript expression data available on Gene Expression Omnibus for Arabidopsis thaliana was utilised for miRNAs identification under endophytism. The analysis predicted 15 miRNAs with differential expression of which the ath-miRNA398b modulation was significant. Application of psRNAtarget, C-mii, pmiREN, and TarDB provided a pool of 357 target genes for these miRNAs. Protein–protein interaction analysis identified major hub proteins, including BTB/POZ domain-containing protein, beta-Xylosidase-2 (AtBXL2), and Copper/Zinc Superoxide Dismutase-2 (AtSOD2). The quantitative real-time PCR validated the computational prediction and expression for selected target genes AtSOD2, AtBXL2, and AtRCA along with ath-miRNA398b under endophytism. Overall, results indicate that miRNAs have a significant role in regulating Arabidopsis thaliana–endophytic fungal interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Gouda, S., Das, G., Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: A treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kandel, S. L., Joubert, P. M., & Doty, S. L. (2017). Bacterial endophyte colonization and distribution within plants. Microorganisms, 5(4), 77.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akram, S., Ahmed, A., He, P., He, P., Liu, Y., Wu, Y., Munir, S., & He, Y. (2023). Uniting the role of endophytic fungi against plant pathogens and their interaction. Journal of Fungi, 9(1), 72.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mengistu, A. A. (2020). Endophytes: Colonization, behaviour, and their role in defense mechanism. International Journal of Microbiology. https://doi.org/10.1155/2020/6927219

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kumar, R. (2014). Role of microRNAs in biotic and abiotic stress responses in crop plants. Applied Biochemistry and Biotechnology, 174, 93–115.

    Article  CAS  PubMed  Google Scholar 

  6. Raza, A., Charagh, S., Karikari, B., Sharif, R., Yadav, V., Mubarik, M. S., Habib, M., Zhuang, Y., Zhang, C., Chen, H., Varshney, R. K., & Zhuang, W. (2023). miRNAs for crop improvement. Plant Physiology and Biochemistry, 201, 107857.

    Article  CAS  PubMed  Google Scholar 

  7. Koter, M. D., Święcicka, M., Matuszkiewicz, M., Pacak, A., Derebecka, N., & Filipecki, M. (2018). The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode. Plant Science, 268, 18–29.

    Article  CAS  PubMed  Google Scholar 

  8. Święcicka, M., Skowron, W., Cieszyński, P., Dąbrowska-Bronk, J., Matuszkiewicz, M., Filipecki, M., & Koter, M. D. (2017). The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs. Plant Physiology and Biochemistry, 113, 51–55.

    Article  PubMed  Google Scholar 

  9. Lauressergues, D., Delaux, P. M., Formey, D., Lelandais-Brière, C., Fort, S., Cottaz, S., Bécard, G., Niebel, A., Roux, C., & Combier, J. P. (2012). The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. The Plant Journal, 72(3), 512–522.

    Article  CAS  PubMed  Google Scholar 

  10. Hussain, S. S., Hussain, M., Irfan, M., & Siddique, K. (2018). Legume, microbiome, and regulatory functions of miRNAs in systematic regulation of symbiosis. In D. Egamberdieva & P. Ahmad (Eds.), Plant microbiome: Stress response (pp. 255–282). Springer.

    Chapter  Google Scholar 

  11. Yang, Z., Yuan, L., Zhu, H., Jiang, J., Yang, H., & Li, L. (2022). Small RNA profiling reveals the involvement of microRNA-mediated gene regulation in response to symbiosis in raspberry. Frontiers in Microbiology, 13, 1082494.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Khare, E., Mishra, J., & Arora, N. K. (2018). Multifaceted interactions between endophytes and plant: Developments and prospects. Frontiers in microbiology, 9, 2732.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumar, V., & Nautiyal, C. S. (2023). Endophytes modulate plant genes: Present status and future perspectives. Current Microbiology, 80(11), 353.

    Article  CAS  PubMed  Google Scholar 

  14. Ye, W., Shen, C. H., Lin, Y., Chen, P. J., Xu, X., Oelmüller, R., Yeh, K. W., & Lai, Z. (2014). Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS ONE, 9(1), e84920.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Pentimone, I., Lebrón, R., Hackenberg, M., Rosso, L. C., Colagiero, M., Nigro, F., & Ciancio, A. (2018). Identification of tomato miRNAs responsive to root colonization by endophytic Pochonia chlamydosporia. Applied Microbiology and Biotechnology, 102, 907–919.

    Article  CAS  PubMed  Google Scholar 

  16. Bateman, A., Agrawal, S., Birney, E., Bruford, E. A., Bujnicki, J. M., Cochrane, G., Cole, J. R., Dinger, M. E., Enright, A. J., Gardner, P. P., Gautheret, D., Sam Griffiths-Jones, S., Harrow, J., Herrero, J., Holmes, I. H., Huang, H., Kelly, K. A., Kersey, P., Kozomara, A., … Zwieb, C. (2011). RNAcentral: A vision for an international database of RNA sequences. RNA, 17(11), 1941–1946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clough, E., & Barrett, T. (2016). The gene expression omnibus database. In E. Mathé & S. Davis (Eds.), Statistical genomics. Methods in molecular biology (Vol. 1418, pp. 93–110). Humana Press.

    Google Scholar 

  18. Mesny, F., Miyauchi, S., Thiergart, T., Pickel, B., Atanasova, L., Karlsson, M., & Hüttel, B., Barry, K.W., Haridas, S., Chen, C., Bauer, D., Andreopoulos, W., Pangilinan, J., LaButti, K., Riley, R., Lipzen, A., Clum, A., Drula, E., Henrissat, B., Kohler, A., Grigoriev, I.V., Martin, F.M., & Hacquard, S. (2021). Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nature Communications, 12(1), 7227.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., Wu, S., & Wang, Y. (2023). SRplot: A free online platform for data visualization and graphing. PLoS ONE, 18(11), e0294236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dai, X., & Zhao, P. X. (2011). psRNATarget: A plant small RNA target analysis server. Nucleic Acids Research, 39(suppl_2), W155–W159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Numnark, S., Mhuantong, W., Ingsriswang, S., & Wichadakul, D. (2012). C-mii: A tool for plant miRNA and target identification. BMC Genomics, 13(7), 1–10.

    Google Scholar 

  22. Guo, Z., Kuang, Z., Wang, Y., Zhao, Y., Tao, Y., Cheng, C., Yang, J., Lu, X., Hao, C., Wang, T., Cao, X., Wei, J., Li, L., & Yang, X. (2020). PmiREN: A comprehensive encyclopedia of plant miRNAs. Nucleic Acids Research, 48(D1), 1114–1121.

    Article  Google Scholar 

  23. Liu, J., Liu, X., Zhang, S., Liang, S., Luan, W., & Ma, X. (2021). TarDB: An online database for plant miRNA targets and miRNA-triggered phased siRNAs. BMC Genomics, 22(1), 1–12.

    Article  Google Scholar 

  24. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(4), 1–7.

    Google Scholar 

  26. Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., & Chang, W. (2022). DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021). Nucleic Acids Research, 50(W1), 216–221.

    Article  Google Scholar 

  27. Sanchita, D., & & Sharma, A. (2014). Analysis of differentially expressed genes in abiotic stress response and their role in signal transduction pathways. Protoplasma, 251, 81–91.

    Article  CAS  PubMed  Google Scholar 

  28. Ghawana, S., Paul, A., Kumar, H., Kumar, A., Singh, H., Bhardwaj, P. K., Rani, A., Singh, R. S., Raizada, J., Singh, K., & Kumar, S. (2011). An RNA isolation system for plant tissues rich in secondary metabolites. BMC Research Notes, 4(1), 1–5.

    Article  Google Scholar 

  29. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  30. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., & Lao, K. Q. (2005). Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Research, 33(20), e179–e179.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Krishnakumar, V., Contrino, S., Cheng, C. Y., Belyaeva, I., Ferlanti, E. S., Miller, J. R., Vaughn, M. W., Micklem, G., Town, C. D., & Chan, A. P. (2017). ThaleMine: A warehouse for Arabidopsis data integration and discovery. Plant and Cell Physiology, 58(1), e4–e4.

    PubMed  Google Scholar 

  32. Wani, Z. A., Mirza, D. N., Arora, P., & Riyaz-Ul-Hassan, S. (2016). Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: An insight into the microbiome of Crocus sativus Linn. Fungal biology, 120(12), 1509–1524.

    Article  PubMed  Google Scholar 

  33. Dolatabadian, A. (2020). Plant–microbe interaction. Biology, 10(1), 15.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thiergart, T., Durán, P., Ellis, T., Vannier, N., Garrido-Oter, R., Kemen, E., Roux, F., Alonso-Blanco, C., Ågren, J., Schulze-Lefert, P., & Hacquard, S. (2020). Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nature Ecology & Evolution, 4(1), 122–131.

    Article  Google Scholar 

  35. Snigdha, M., & Prasath, D. (2021). Transcriptomic analysis to reveal the differentially expressed miRNA targets and their miRNAs in response to Ralstonia solanacearum in ginger species. BMC Plant Biology, 21(1), 1–14.

    Article  Google Scholar 

  36. Tanaka, A., Christensen, M. J., Takemoto, D., Park, P., & Scott, B. (2006). Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. The Plant Cell, 18(4), 1052–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sahu, P. K., Jayalakshmi, K., Tilgam, J., Gupta, A., Nagaraju, Y., Kumar, A., Hamid, S., Singh, H. V., Minkina, T., Rajput, V. D., & Rajawat, M. V. S. (2022). ROS generated from biotic stress: Effects on plants and alleviation by endophytic microbes. Frontiers in Plant Science, 13, 1042936.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, C., Gao, H., Li, R., Han, D., Wang, L., Wu, J., Xu, P., & Zhang, S. (2019). GmBTB/POZ, a novel BTB/POZ domain-containing nuclear protein, positively regulates the response of soybean to Phytophthora sojae infection. Molecular Plant Pathology, 20(1), 78–91.

    Article  CAS  PubMed  Google Scholar 

  39. González Teuber, M., Contreras, R. A., Zúñiga, G. E., Barrera, D., & Bascuñán-Godoy, L. (2022). Synergistic association with root endophytic fungi improves morpho-physiological and biochemical responses of Chenopodium quinoa to salt stress. Frontiers in Ecology and Evolution, 9, 787318.

    Article  Google Scholar 

Download references

Acknowledgements

PY is thankful to UGC, India for fellowship. Authors are thankful to Guo Zhonglong, Nanjing Forestry University to provide the pmiREN targets from his server.

Funding

There is no funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

KS and AM designed and conceptualized the work. PY and AM executed the experiments. AM, PY, and KS analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Kunal Singh.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Yadav, P. & Singh, K. Host Response of Arabidopsis thaliana Interaction with Fungal Endophytes Involves microRNAs. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01051-7

Keywords

Navigation