Skip to main content

Advertisement

Log in

Traditional System Versus DNA Barcoding in Identification of Bamboo Species: A Systematic Review

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Bamboo, a gramineous plant belonging to the family Poaceae, comprises of 1575 species from 116 genera across the globe. It has the ability to grow and evolve on degraded land and hence, can be utilized in the various applications as an alternative for plastic and wood. DNA barcoding, a long genomic sequence, identifies barcode region which shows species-specific nucleotide differences. This technology is considered as advanced molecular technique utilized for characterization and classification of the various species by applying distinctive molecular markers. Recent investigations revealed the potential application of various barcode regions such as matK, rbcL, rpoB, rpoC1, psbA-trnH, and ITS2, in identification of many bamboo species from different genus. In this review we comprehensively discussed the relevance of DNA barcoding as a tool in classification/identification of various bamboo species. We highlighted the methodology, how this advance technology overcomes the challenges associated with traditional methods along with prospects for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singh, L., Ruprela, N., Dafale, N., & Thul, S. T. (2020). Variation in endophytic bacterial communities associated with the rhizomes of tropical Bamboos. Journal of Sustainable Forestry. https://doi.org/10.1080/10549811.2020.1745655

    Article  Google Scholar 

  2. Akwada, D. R., & Akinlabi, E. T. (2020). Mechanical and Physical Properties of Bamboo Species in Ghana. In M. Awang, S. S. Emamian, & F. Yusof (Eds.), (pp. 423–433). Springer.

  3. Wang, T., Li, Q., Lou, S., Yang, Y., Peng, L., Lin, Z., Hu, Q., & Ma, L. (2019). GSK3/shaggy-like kinase 1 ubiquitously regulates cell growth from Arabidopsis to Moso bamboo (Phyllostachys edulis). Plant Science, 283, 290–300. https://doi.org/10.1016/j.plantsci.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  4. Chaowana, P., & Barbu, M. C. (2017). 13—Bamboo: Potential material for biocomposites. In M. Jawaid, P. Md Tahir, & N. Saba (Eds.), Woodhead publishing series in composites science and engineering (pp. 259–289). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100959-8.00013-5

    Chapter  Google Scholar 

  5. Cao, Z. H., Zhou, G. M., & Wong, M. H. (2011). Special issue on Bamboo and climate change in China. The Botanical Review, 77(3), 188. https://doi.org/10.1007/s12229-011-9064-1

    Article  Google Scholar 

  6. Ali, N., Ting, Z., Li, H., Xue, Y., Gan, L., Liu, J., & Long, M. (2015). Heterogeneous expression and functional characterization of cellulose-degrading enzymes from aspergillus niger for enzymatic hydrolysis of alkali pretreated bamboo biomass. Molecular Biotechnology, 57(9), 859–867. https://doi.org/10.1007/s12033-015-9878-x

    Article  CAS  PubMed  Google Scholar 

  7. Sawarkar, A. D., Shrimankar, D. D., Kumar, A., Kumar, A., Singh, E., Singh, L., Kumar, S., & Kumar, R. (2020). Commercial clustering of sustainable bamboo species in India. Industrial Crops and Products, 154, 112693. https://doi.org/10.1016/j.indcrop.2020.112693

    Article  Google Scholar 

  8. Singh, L., Jaiswal, A., Thul, S. T., & Purohit, H. J. (2017). Ecological and economic importance of bamboos. In Advances in Life Sciences (pp. 132–140). S. R. Scientific Publications. Retrieved from http://neeri.csircentral.net/id/eprint/1118

  9. Azeez, M. A., & Orege, J. I. (2018). Bamboo, Its Chemical Modification and Products. Journal of Bamboo Current and Future Prospects. https://doi.org/10.5772/intechopen.76359

    Article  Google Scholar 

  10. Sugesty, S., Kardiansyah, T., & Hardiani, H. (2015). Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber. Procedia Chemistry, 17, 194–199. https://doi.org/10.1016/j.proche.2015.12.122

    Article  CAS  Google Scholar 

  11. Singh, L., Sridharan, S., Thul, S. T., Kokate, P., Kumar, P., Kumar, S., & Kumar, R. (2020). Eco-rejuvenation of degraded land by microbe assisted bamboo plantation. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2020.112795

    Article  Google Scholar 

  12. Mali, P. R., & Datta, D. (2018). Experimental evaluation of bamboo reinforced concrete slab panels. Construction and Building Materials, 188, 1092–1100. https://doi.org/10.1016/j.conbuildmat.2018.08.162

    Article  Google Scholar 

  13. Rudradawong, C., & Ruttanapun, C. (2019). High temperature electrical and thermal properties of activated bamboo charcoal/C12A7 mayenite composite prepared by carbon di ff usion process. Materials Chemistry and Physics, 226(January), 296–301. https://doi.org/10.1016/j.matchemphys.2019.01.028

    Article  CAS  Google Scholar 

  14. Wang, P., Maliang, H., Wang, C., & Ma, J. (2015). Bamboo charcoal by-products as sources of new insecticide and acaricide. Industrial Crops and Products, 77, 575–581. https://doi.org/10.1016/j.indcrop.2015.09.004

    Article  CAS  Google Scholar 

  15. Pant, D., Misra, S., Nizami, A.-S., Rehan, M., van Leeuwen, R., Tabacchioni, S., Goel, R., Sarma, P., Bakker, R., Sharma, N., Kwant, K., Diels, L., & Elst, K. (2019). Towards the development of a biobased economy in Europe and India. Critical Reviews in Biotechnology, 39(6), 779–799. https://doi.org/10.1080/07388551.2019.1618787

    Article  PubMed  Google Scholar 

  16. Schiavon, M., Ragazzi, M., Rada, E. C., & Torretta, V. (2016). Air pollution control through biotrickling filters: A review considering operational aspects and expected performance. Critical Reviews in Biotechnology, 36(6), 1143–1155. https://doi.org/10.3109/07388551.2015.1100586

    Article  CAS  PubMed  Google Scholar 

  17. Kumar, M., Dutta, S., You, S., Luo, G., Zhang, S., Show, P. L., Sawarkar, A. D., Singh, L., & Tsang, D. C. W. (2021). A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2021.127143

    Article  Google Scholar 

  18. Hai, L., Choi, E. S., Zhai, L., Panicker, P. S., & Kim, J. (2020). Green nanocomposite made with chitin and bamboo nanofibers and its mechanical, thermal and biodegradable properties for food packaging. International Journal of Biological Macromolecules, 144, 491–499. https://doi.org/10.1016/j.ijbiomac.2019.12.124

    Article  CAS  PubMed  Google Scholar 

  19. Huang, Y., Ji, Y., & Yu, W. (2019). Development of bamboo scrimber: A literature review. Journal of Wood Science, 65(1), 25. https://doi.org/10.1186/s10086-019-1806-4

    Article  Google Scholar 

  20. Muhammad, A., Rahman, M. R., Hamdan, S., & Sanaullah, K. (2019). Recent developments in bamboo fiber-based composites: A review. Polymer Bulletin, 76(5), 2655–2682. https://doi.org/10.1007/s00289-018-2493-9

    Article  CAS  Google Scholar 

  21. Fuke, P., Manu, T. M., Kumar, M., Sawarkar, A. D., Pandey, A., & Singh, L. (2021). Role of microbial diversity to influence the growth and environmental remediation capacity of bamboo: A review. Industrial Crops and Products, 167, 113567. https://doi.org/10.1016/j.indcrop.2021.113567

    Article  Google Scholar 

  22. Dransfield, S., & Widjaja, E. A. (1995). Plant resources of South-East Asia. (Vol. 7). Prosea Foundation. Prosea Foundation by Backhuys Publishers. Retrieved from https://edepot.wur.nl/411162

  23. Li, W. (1997). Molecular evolution. Sinauer Associates Incorporated.

  24. Soderstrom, T. R., Ellis, R. P., & Judziewicz, E. J. (1987). The Phareae and Streptogyneae (Poaceae) of Sri Lanka: A morphological-anatomical study. Smithsonian Contributions to Botany.

  25. Janzen, D. H. (1976). Why bamboos wait so long to flower. Annual Review of Ecology and Systematics, 7(1), 347–391.

    Article  Google Scholar 

  26. Ramanayake, S. M. S. D., Meemaduma, V. N., & Weerawardene, T. E. (2007). Genetic diversity and relationships between nine species of bamboo in Sri Lanka, using Random Amplified Polymorphic DNA. Plant Systematics and Evolution, 269(1–2), 55–61. https://doi.org/10.1007/s00606-007-0587-1

    Article  CAS  Google Scholar 

  27. Singh, L., Thul, S. T., & Mohan Manu, T. (2021). Chapter 18—Development of bamboo biodiversity on mining degraded lands: A sustainable solution for climate change mitigation. In K. Bauddh, J. Korstad, & P. Sharma (Eds.), Phytorestoration of abandoned mining and oil drilling sites (pp. 439–451). Elsevier. https://doi.org/10.1016/B978-0-12-821200-4.00002-9

  28. Teama, S. (2018). DNA polymorphisms: DNA-based molecular markers and their application in medicine. Genetic Diversity and Disease Susceptibility. https://doi.org/10.5772/intechopen.79517

    Article  Google Scholar 

  29. Kobayashi, M. (1997). Phylogeny of world bamboos analysed by restriction fragment length polymorphisms of chloroplast DNA. The Bamboos, 225–234.

  30. Clark, L. G. (1997). Bamboos: the centerpiece of the grass family. The bamboos, 237–248.

  31. Amom, T., Tikendra, L., Apana, N., Goutam, M., Sonia, P., Koijam, A. S., Potshangbam, A. M., Rahaman, H., & Nongdam, P. (2020). Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of North-East India. Phytochemistry. https://doi.org/10.1016/j.phytochem.2020.112330

    Article  PubMed  Google Scholar 

  32. Amom, T., Tikendra, L., Rahaman, H., Potshangbam, A., & Nongdam, P. (2018). Evaluation of genetic relationship between 15 bamboo species of North-East India based on ISSR marker analysis. Molecular Biology Research Communications, 7(1), 7–15. https://doi.org/10.22099/mbrc.2018.28378.1303

  33. Maheaswari, R., Kshirsagar, J. T., & Nallasivam, L. (2016). Polymerase chain reaction: A molecular diagnostic tool in periodontology. Journal of Indian Society of Periodontology, 20(2), 128–135. https://doi.org/10.4103/0972-124X.176391

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thakur, J., Dwivedi, M. D., Sourabh, P., Uniyal, P. L., & Pandey, A. K. (2016). Genetic homogeneity revealed using SCoT, ISSR and RAPD markers in micropropagated Pittosporum eriocarpum Royle—An endemic and endangered medicinal plant. PLoS ONE. https://doi.org/10.1371/journal.pone.0159050

  35. Xiong, F., Zhong, R., Han, Z., Jiang, J., He, L., Zhuang, W., & Tang, R. (2011). Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachishypogaea L.) genotypes. Molecular Biology Reports, 38(5), 3487–3494. https://doi.org/10.1007/s11033-010-0459-6

  36. Sen, S., Skaria, R., & Muneer, P. M. A. (2010). Genetic diversity analysis in piper species (Piperaceae) using RAPD markers. Molecular Biotechnology, 46(1), 72–79. https://doi.org/10.1007/s12033-010-9281-6

    Article  CAS  PubMed  Google Scholar 

  37. Cichorz, S., Gośka, M., & Litwiniec, A. (2014). Miscanthus: Genetic diversity and genotype identification using ISSR and RAPD markers. Molecular Biotechnology, 56(10), 911–924. https://doi.org/10.1007/s12033-014-9770-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aydın, F., Özer, G., Alkan, M., & Çakır, İ. (2020). The utility of iPBS retrotransposons markers to analyze genetic variation in yeast. International Journal of Food Microbiology. https://doi.org/10.1016/j.ijfoodmicro.2020.108647

    Article  PubMed  Google Scholar 

  39. Cabo, S., Ferreira, L., Carvalho, A., Martins-Lopes, P., Martín, A., & Lima-Brito, J. E. (2014). Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents. Journal of Applied Genetics, 55(3), 307–312. https://doi.org/10.1007/s13353-014-0211-3

    Article  CAS  PubMed  Google Scholar 

  40. Costa, R., Pereira, G., Garrido, I., Tavares-de-Sousa, M. M., & Espinosa, F. (2016). Comparison of RAPD, ISSR, and AFLP Molecular markers to reveal and classify Orchardgrass (Dactylis glomerata L.) germplasm variations. PLoS ONE, 11(4), e0152972. https://doi.org/10.1371/journal.pone.0152972

  41. Desai, P., Gajera, B., Mankad, M., Shah, S., Patel, A., Patil, G., Narayanan, S., & Kumar, N. (2015). Comparative assessment of genetic diversity among Indian bamboo genotypes using RAPD and ISSR markers. Molecular Biology Reports, 42(8), 1265–1273. https://doi.org/10.1007/s11033-015-3867-9

    Article  CAS  PubMed  Google Scholar 

  42. Etminan, A., Pour-Aboughadareh, A., Mohammadi, R., Ahmadi-Rad, A., Noori, A., Mahdavian, Z., & Moradi, Z. (2016). Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnology & Biotechnological Equipment, 30(6), 1075–1081. https://doi.org/10.1080/13102818.2016.1228478

    Article  Google Scholar 

  43. Fernández, M., Figueiras, A., & Benito, C. (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 104(5), 845–851. https://doi.org/10.1007/s00122-001-0848-2

    Article  CAS  PubMed  Google Scholar 

  44. Garcia, A. A. F., Benchimol, L. L., Barbosa, A. M. M., Geraldi, I. O., Souza Jr., C. L., & de Souza, A. P. (2004). Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology. scielo.

  45. Kalendar, R., Antonius, K., Smýkal, P., & Schulman, A. H. (2010). iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 121(8), 1419–1430. https://doi.org/10.1007/s00122-010-1398-2

    Article  CAS  PubMed  Google Scholar 

  46. Kumar, M., Kumar, M., Pandey, A., & Thakur, I. S. (2019). Genomic analysis of carbon dioxide sequestering bacterium for exopolysaccharides production. Scientific Reports, 9(1), 4270. https://doi.org/10.1038/s41598-019-41052-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumar, M., Morya, R., Gnansounou, E., Larroche, C., & Thakur, I. S. (2017). Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel. Bioresource Technology, 243, 893–897. https://doi.org/10.1016/j.biortech.2017.07.067

    Article  CAS  PubMed  Google Scholar 

  48. Thakur, I. S., Kumar, M., Varjani, S. J., Wu, Y., Gnansounou, E., & Ravindran, S. (2018). Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges. Bioresource Technology, 256, 478–490. https://doi.org/10.1016/j.biortech.2018.02.039

    Article  CAS  PubMed  Google Scholar 

  49. Sun, Y., Xia, N., & Stapleton, C. M. A. (2006). Relationships between Bambusa species (Poaceae, Bambusoideae) revealed by random amplified polymorphic DNA. Biochemical Systematics and Ecology, 34(5), 417–423. https://doi.org/10.1016/j.bse.2005.10.015

  50. Goyal, A. K., Pradhan, S., Basistha, B. C., & Sen, A. (2015). Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech, 5(4), 473–482. https://doi.org/10.1007/s13205-014-0244-7

  51. Shalini, A., Meena, R. K., Tarafdar, S., & Thakur, S. (2013). Evaluation of genetic diversity in bamboo through DNA marker and study of association with morphological traits. Bulletin of Environment, Pharmacology and Life Sciences, 2(8), 78–83.

    Google Scholar 

  52. Goh, W. L., Chandran, S., Lin, R.-S., Xia, N.-H., & Wong, K. M. (2010). Phylogenetic relationships among Southeast Asian climbing bamboos (Poaceae: Bambusoideae) and the Bambusa complex. Biochemical Systematics and Ecology, 38(4), 764–773. https://doi.org/10.1016/j.bse.2010.07.006

    Article  CAS  Google Scholar 

  53. Goh, W. L., Chandran, S., Franklin, D. C., Isagi, Y., Koshy, K. C., Sungkaew, S., Yang, H. Q., Xia, N. H., & Wong, K. M. (2013). Multi-gene region phylogenetic analyses suggest reticulate evolution and a clade of Australian origin among paleotropical woody bamboos (Poaceae: Bambusoideae: Bambuseae). Plant Systematics and Evolution, 299(1), 239–257. https://doi.org/10.1007/s00606-012-0718-1

    Article  Google Scholar 

  54. Das, M., Bhattacharya, S., & Pal, A. (2005). Generation and characterization of SCARs by cloning and sequencing of RAPD products: A strategy for species-specific marker development in bamboo. Annals of Botany, 95(5), 835–841. https://doi.org/10.1093/aob/mci088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Loh, J. P., Kiew, R., Set, O., Gan, L. H., & Gan, Y.-Y. (2000). A Study of Genetic Variation and Relationships within the Bamboo Subtribe Bambusinae using Amplified Fragment Length Polymorphism. Annals of Botany, 85(5), 607–612. https://doi.org/10.1006/anbo.2000.1109

    Article  CAS  Google Scholar 

  56. Nayak, S., Rout, G. R., & Das, P. (2003). Evaluation of the genetic variability in bamboo using RAPD markers. Plant Soil and Environment, 49(1), 24–28.

    Article  CAS  Google Scholar 

  57. Bennet, S. S. R., Gaur, R. C., & Sharma, P. N. (1990). Thirty seven bamboos growing in India. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=US201300307185

  58. Friar, E., & Kochert, G. (1991). Bamboo germplasm screening with nuclear restriction fragment length polymorphisms. Theoretical and Applied Genetics, 82(6), 697–703. https://doi.org/10.1007/BF00227313

    Article  CAS  PubMed  Google Scholar 

  59. Cai, K., Zhu, L., Zhang, K., Li, L., Zhao, Z., Zeng, W., & Lin, X. (2019). Development and characterization of EST-SSR markers from RNA-Seq data in Phyllostachys violascens. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00050

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mukherjee, A. K., Ratha, S., Dhar, S., Debata, A. K., Acharya, P. K., Mandal, S., Panda, P. C., & Mahapatra, A. K. (2010). Genetic relationships among 22 taxa of bamboo revealed by ISSR and EST-based random primers. Biochemical Genetics, 48(11), 1015–1025. https://doi.org/10.1007/s10528-010-9390-8

    Article  CAS  PubMed  Google Scholar 

  61. Padial, J. M., & De la Riva, I. (2007). Integrative taxonomists should use and produce DNA barcodes. Retrieved from https://www.mapress.com/j/zt/article/view/zootaxa.1586.1.7

  62. Hillis, D. M. (1987). Molecular versus morphological approaches to systematics. Annual review of Ecology and Systematics, 18(1), 23–42.

    Article  Google Scholar 

  63. Dam, J. E. G. Van, Elbersen, H. W., & Montaño, C. M. D. (2018). 6Bamboo Production for Industrial Utilization. Perennial Grasses for Bioenergy and Bioproducts. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812900-5.00006-0

  64. Kawasaki, M., Yordsri, V., Thanachayanont, C., Junin, C., Asahina, S., Oikawa, T., Saiki, A., & Shiojiri, M. (2017). Structures of green culms and charcoal of Bambusa multiplex. Microscopy and Microanalysis, 23(S1), 1294–1295. https://doi.org/10.1017/S1431927617007139

    Article  Google Scholar 

  65. Banik, R. L. (2016). Silviculture of South Asian priority bamboos. Springer. https://doi.org/10.1007/978-981-10-0569-5

    Book  Google Scholar 

  66. Liese, W., & Köhl, M. (2015). Bamboo: the plant and its uses. Springer.

    Book  Google Scholar 

  67. Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218

  68. Lebonah, D. E., Dileep, A., Chandrasekhar, K., Sreevani, S., Sreedevi, B., & Pramoda Kumari, J. (2014). DNA barcoding on bacteria: A review. Advances in Biology. https://doi.org/10.1155/2014/541787

    Article  Google Scholar 

  69. Lambert, D. M., Baker, A., Huynen, L., Haddrath, O., Hebert, P. D. N., & Millar, C. D. (2005). Is a large-scale DNA-based inventory of ancient life possible? Journal of Heredity, 96(3), 279–284. https://doi.org/10.1093/jhered/esi035

    Article  CAS  Google Scholar 

  70. Kress, W. J. (2017). Plant DNA barcodes: Applications today and in the future. Journal of Systematics and Evolution, 55(4), 291–307. https://doi.org/10.1111/jse.12254

    Article  Google Scholar 

  71. Vijayan, K., & Tsou, C. H. (2010). DNA barcoding in plants: taxonomy in a new perspective. Current Science, 99, 1530–1541. Retrieved from https://www.jstor.org/stable/24069450

  72. Kaur, S. (2015). DNA barcoding and its applications. International Journal of Engineering Research and General Science, 3(2), 602–604.

    Google Scholar 

  73. Cheifet, B. (2019). Where is genomics going next? Genome Biology, 20(1), 17. https://doi.org/10.1186/s13059-019-1626-2

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hebert, P. D. N., & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology, 54(5), 852–859. https://doi.org/10.1080/10635150500354886

    Article  PubMed  Google Scholar 

  75. Nater, A., Burri, R., Kawakami, T., Smeds, L., & Ellegren, H. (2015). Resolving evolutionary relationships in closely related species with whole-genome sequencing data. Systematic Biology, 64(6), 1000–1017. https://doi.org/10.1093/sysbio/syv045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ramakrishnan, M., Yrjälä, K., Vinod, K. K., Sharma, A., Cho, J., Satheesh, V., & Zhou, M. (2020). Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food and Energy Security. https://doi.org/10.1002/fes3.229

  77. Wang, X., Ye, X., Zhao, L., Li, D., Guo, Z., & Zhuang, H. (2017). Genome-wide RAD sequencing data provide unprecedented resolution of the phylogeny of temperate bamboos (Poaceae: Bambusoideae). Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-11367-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guo, Z.-H., Chen, Y.-Y., Li, D.-Z., & Yang, J.-B. (2001). Genetic variation and evolution of the Alpine Bamboos (Poaceae: Bambusoideae) using DNA sequence data. Journal of Plant Research, 114(3), 315–322. https://doi.org/10.1007/PL00013993

    Article  CAS  Google Scholar 

  79. Hodkinson, T. R., Renvoize, S. A., Chonghaile, G. N., Stapleton, C. M. A., & Chase, M. W. (2000). A comparison of ITS nuclear rDNA sequence data and AFLP markers for phylogenetic studies in Phyllostachys (Bambusoideae, Poaceae). Journal of Plant Research, 113(3), 259–269. https://doi.org/10.1007/PL00013936

    Article  CAS  Google Scholar 

  80. Zhang, W.-P. (1996). Phylogeny and classification of the bamboos (Poaceae: Bambusoideae) based on molecular and morphological data.

  81. Dev, S. A., Sijimol, K., Prathibha, P. S., Sreekumar, V. B., & Muralidharan, E. M. (2020). DNA barcoding as a valuable molecular tool for the certification of planting materials in bamboo. 3 Biotech, 10(2), 59. https://doi.org/10.1007/s13205-019-2018-8

  82. Ma, P.-F., Zhang, Y.-X., Guo, Z.-H., & Li, D.-Z. (2015). Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Scientific Reports, 5(1), 11608. https://doi.org/10.1038/srep11608

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gami, B., Syed, B. A., & Patel, B. (2015). Assessment of genetic diversity in Bamboo accessions of india using molecular markers. International Journal of Applied Sciences and Biotechnology. https://doi.org/10.3126/ijasbt.v3i2.12587

    Article  Google Scholar 

  84. Zhao, H., Yang, L., Peng, Z., Sun, H., Yue, X., Lou, Y., Dong, L., Wang, L., & Gao, Z. (2015). Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys. Scientific Reports, 5(1), 8018. https://doi.org/10.1038/srep08018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sijimol, K., Dev, S. A., Muralidharan, E. M., & Sreekumar, V. B. (2014). DNA barcoding: An emerging tool for precise identification and certification of planting stock in taxonomically challenging bamboo species. Journal of Bamboo and Rattan, 13(1/2), 29–43.

    Google Scholar 

  86. Lin, Y., Lu, J.-J., Wu, M.-D., Zhou, M.-B., Fang, W., Ide, Y., & Tang, D.-Q. (2014). Identification, cross-taxon transferability and application of full-length cDNA SSR markers in Phyllostachys pubescens. Springerplus, 3(1), 486. https://doi.org/10.1186/2193-1801-3-486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jethra, G., Mishra, A. K., Pandey, P. S., Choudhary, S., & Chandrasekharan, H. (2014). Phylogenetic and structural scrutiny of matK gene from wheat representing Poaceae family for DNA barcoding. International Journal of Science and Nature, 5(1), 141–146.

    CAS  Google Scholar 

  88. YuXiao, Z., YuXing, X., PengFei, M., LiNa, Z., & DeZhu, L. (2013). Selection of potential plastid DNA barcodes for Bambusoideae (Poaceae). Plant Diversity and Resources, 35(6), 743–750.

    Google Scholar 

  89. Waghmare, V. N., & Bagde, U. S. (2013). Random amplified polymorphic DNA based genetic characterization of four important species of Bamboo, found in Raigad district, Maharashtra State, India. African Journal of Biotechnology. https://doi.org/10.5897/AJB2013.12033

  90. Sosa, V., Mejía-Saules, T., Cuéllar, M. A., & Vovides, A. P. (2013). DNA Barcoding in endangered Mesoamerican groups of plants. Botanical Review, 79(4), 469–482. https://doi.org/10.1007/s12229-013-9129-4

    Article  Google Scholar 

  91. Das, M. M., Mahadani, P., Singh, R., Karmakar, K., & Ghosh, S. K. (2013). matK sequence based plant DNA barcoding failed to identify Bambusa (Family: Poaceae) species from Northeast India. Journal of Environment and Sociobiology, 10(1), 49–54.

    Google Scholar 

  92. Nag, A., Gupta, P., Sharma, V., Sood, A., Ahuja, P. S., & Sharma, R. K. (2013). AFLP and RAPD based genetic diversity assessment of industrially important reed bamboo (Ochlandra travancorica Benth). Journal of Plant Biochemistry and Biotechnology, 22(1), 144–149. https://doi.org/10.1007/s13562-012-0114-5

    Article  Google Scholar 

  93. Cai, Z.-M., Zhang, Y.-X., Zhang, L.-N., Gao, L.-M., & Li, D.-Z. (2012). Testing four candidate barcoding markers in temperate woody bamboos (Poaceae: Bambusoideae). Journal of Systematics and Evolution, 50(6), 527–539. https://doi.org/10.1111/j.1759-6831.2012.00216.x

    Article  Google Scholar 

  94. Yang, H.-Q., An, M.-Y., Gu, Z.-J., & Tian, B. (2012). Genetic diversity and differentiation of Dendrocalamus membranaceus (Poaceae: Bambusoideae), a declining Bamboo species in Yunnan, China, as based on inter-simple sequence repeat (ISSR) Analysis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms13044446

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pattanaik, S., & Hall, J. B. (2011). Molecular evidence for polyphyly in the woody bamboo genus Dendrocalamus (subtribe Bambusinae). Plant Systematics and Evolution, 291(1), 59–67. https://doi.org/10.1007/s00606-010-0380-4

    Article  Google Scholar 

  96. Zhang, Y.-J., Ma, P.-F., & Li, D.-Z. (2011). High-throughput sequencing of six bamboo chloroplast genomes: Phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS ONE, 6(5), e20596–e20596. https://doi.org/10.1371/journal.pone.0020596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kumar, P. P., Turner, I. M., Nagaraja Rao, A., & Arumuganathan, K. (2011). Estimation of nuclear DNA content of various bamboo and rattan species. Plant Biotechnology Reports, 5(4), 317–322. https://doi.org/10.1007/s11816-011-0185-0

    Article  Google Scholar 

  98. Yasodha, R. (2011). Characterization of microsatellites in the tribe Bambuseae. Gene Conserve, 10(39).

  99. Bhattacharya, S., Ghosh, J. S., Das, M., & Pal, A. (2009). Morphological and molecular characterization of Thamnocalamus spathiflorus subsp. spathiflorus at population level. Plant Systematics and Evolution, 282(1), 13–20. https://doi.org/10.1007/s00606-008-0092-1

  100. Eevera, T., Rajandran, K., Saradha, S., & Lashmi, A. (2008). Analysis of genetic variation in selected bamboo species using RAPD. Tree and Forestry Science and Biotechnology, 2(1), 54–56.

    Google Scholar 

  101. Sharma, R. K., Gupta, P., Sharma, V., Sood, A., Mohapatra, T., & Ahuja, P. S. (2008). Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo. Genome, 51(2), 91–103. https://doi.org/10.1139/G07-101

    Article  CAS  PubMed  Google Scholar 

  102. Gui, Y., Wang, S., Quan, L., Zhou, C., Long, S., Zheng, H., Jin, L., Zhang, X. Y., Ma, N. X., & Fan, L. (2007). Genome size and sequence composition of moso bamboo: A comparative study. Science in China Series C: Life Sciences, 50(5), 700–705. https://doi.org/10.1007/s11427-007-0081-6

    Article  CAS  PubMed  Google Scholar 

  103. Das, M., Bhattacharya, S., Basak, J., & Pal, A. (2007). Phylogenetic relationships among the bamboo species as revealed by morphological characters and polymorphism analyses. Biologia Plantarum, 51(4), 667–672. https://doi.org/10.1007/s10535-007-0140-7

    Article  CAS  Google Scholar 

  104. Marulanda, M. L., López, A. M., & Claroz, J. L. (2007). Analyzing the genetic diversity of Guadua spp. in Colombia using rice and sugarcane microsatellites. Crop Breeding and Applied Biotechnology, 7(1).

  105. Nayak, S., & Rout, G. R. (2005). Characterization of microsatellites in Bambusa arundinacea and cross species amplification in other Bamboos. Zeitschrift für Naturforschung C, 60(7–8), 605–610. https://doi.org/10.1515/znc-2005-7-816

    Article  CAS  Google Scholar 

  106. Guo, Z.-H., & Li, D.-Z. (2004). Phylogenetics of the Thamnocalamus group and its allies (Gramineae: Bambusoideae): Inference from the sequences of GBSSI gene and ITS spacer. Molecular Phylogenetics and Evolution, 30(1), 1–12. https://doi.org/10.1016/S1055-7903(03)00161-1

    Article  CAS  PubMed  Google Scholar 

  107. Marulanda, M. L., Márquez, P., & Londoño, X. (2002). AFLP analysis of Guadua angustifolia (Poaceae: Bambusoideae) in Columbia with emphasis on the coffee region. J Am Bamboo Soc, 16(1), 32–42.

    Google Scholar 

  108. Kelchner, S. A., & Clark, L. G. (1997). Molecular evolution and phylogenetic utility of the Chloroplastrpl 16 Intron in Chusquea and the Bambusoideae (Poaceae). Molecular Phylogenetics and Evolution, 8(3), 385–397. https://doi.org/10.1006/mpev.1997.0432

    Article  CAS  PubMed  Google Scholar 

  109. Gielis, J. (1997). Genetic variability and relationships in Phyllostachys using random amplified polymorphic DNA. In The Bamboos: Linn. Soc. Symp. Ser. (Vol. 19, pp. 107–124).

  110. Watanabe, M., Ito, M., & Kurita, S. (1994). Chloroplast DNA phylogeny of Asian Bamboos (Bambusoideae, Poaceae) and its systematic implication. Journal of Plant Research, 107(3), 253–261. https://doi.org/10.1007/BF02344252

    Article  CAS  Google Scholar 

  111. Hsiao, J.-Y., & Rieseberg, L. H. (1994). Population genetic structure of Yushania niitakayamensis (Bambusoideae, Poaceae) in Taiwan. Molecular Ecology, 3(3), 201–208. https://doi.org/10.1111/j.1365-294X.1994.tb00053.x

    Article  Google Scholar 

  112. Sharma, V., Bhardwaj, P., Kumar, R., Sharma, R. K., Sood, A., & Ahuja, P. S. (2009). Identification and cross-species amplification of EST derived SSR markers in different bamboo species. Conservation Genetics, 10(3), 721–724. https://doi.org/10.1007/s10592-008-9630-1

    Article  CAS  Google Scholar 

  113. Saha, M. C., Mian, M. A. R., Eujayl, I., Zwonitzer, J. C., Wang, L., & May, G. D. (2004). Tall fescue EST-SSR markers with transferability across several grass species. Theoretical and Applied Genetics, 109(4), 783–791. https://doi.org/10.1007/s00122-004-1681-1

    Article  PubMed  Google Scholar 

  114. Jiang, W., Bai, T., Dai, H., Wei, Q., Zhang, W., & Ding, Y. (2017). Microsatellite markers revealed moderate genetic diversity and population differentiation of moso bamboo (Phyllostachys edulis)—A primarily asexual reproduction species in China. Tree Genetics & Genomes, 13(6), 130. https://doi.org/10.1007/s11295-017-1212-2

    Article  Google Scholar 

  115. Kaneko, S., Franklin, D. C., Yamasaki, N., & Isagi, Y. (2008). Development of microsatellite markers for Bambusa arnhemica (Poaceae: Bambuseae), a bamboo endemic to northern Australia. Conservation Genetics, 9(5), 1311–1313. https://doi.org/10.1007/s10592-007-9467-z

    Article  CAS  Google Scholar 

  116. Lin, X. C., Lou, Y. F., Liu, J., Peng, J. S., Liao, G. L., & Fang, W. (2010). Crossbreeding of Phyllostachys species (Poaceae) and identification of their hybrids using ISSR markers. Genetics and Molecular Research, 9(3), 1398–1404. https://doi.org/10.4238/vol9-3gmr855

    Article  CAS  PubMed  Google Scholar 

  117. Jiang, W.-X., Zhang, W.-J., & Ding, Y.-L. (2013). Development of polymorphic microsatellite markers for Phyllostachys edulis (Poaceae), an important bamboo species in China. Applications in Plant Sciences, 1(7), 1200012. https://doi.org/10.3732/apps.1200012

    Article  Google Scholar 

  118. Annisa, A., Hafzari, R., Setiawati, T., Irawan, B., & Kusmoro, J. (2019). Evaluation of RAPD markers for molecular identification of five bamboo genera from Indonesia.https://doi.org/10.2478/ffp-2019-0025

  119. Lin, X., Lou, Y., Zhang, Y., Yuan, X., He, J., & Fang, W. (2011). Identification of genetic diversity among cultivars of Phyllostachys violascens using ISSR, SRAP and AFLP markers. The Botanical Review, 77(3), 223–232. https://doi.org/10.1007/s12229-011-9078-8

    Article  Google Scholar 

  120. Konzen, E. R., Peron, R., Ito, M. A., Brondani, G. E., & TSA, S. M. (2017). Molecular identification of bamboo genera and species based on RAPD-RFLP markers. Embrapa Agropecuária Oeste-Artigo em periódico indexado (ALICE). https://doi.org/10.14214/sf.1691

  121. Friar, E., & Kochert, G. (1994). A study of genetic variation and evolution of Phyllostachys (Bambusoideae: Poaceae) using nuclear restriction fragment length polymorphisms. Theoretical and Applied Genetics, 89(2), 265–270. https://doi.org/10.1007/BF00225152

    Article  CAS  PubMed  Google Scholar 

  122. Mittal, B., Chaturvedi, P., & Tulsyan, S. (2013). Restriction Fragment Length Polymorphism. In S. Maloy & K. Hughes (Eds.), Brenner's encyclopedia of genetics (pp. 190–193). Academic Press. https://doi.org/10.1016/B978-0-12-374984-0.01314-0

  123. Kelchner, S. A. (2013). Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Molecular Phylogenetics and Evolution, 67(2), 404–413. https://doi.org/10.1016/j.ympev.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  124. Lakra, W. S., Verma, M. S., Goswami, M., Lal, K. K., Mohindra, V., Punia, P., Gopalakrishnan, A., Singh, K. V., Ward, R. D., & Hebert, P. (2011). DNA barcoding Indian marine fishes. Molecular Ecology Resources, 11(1), 60–71. https://doi.org/10.1111/j.1755-0998.2010.02894.x

    Article  CAS  PubMed  Google Scholar 

  125. CCMB. (2019). DNA Barcoding Anurans of India. Retrieved September 13, 2020, from http://tdb.ccmb.res.in/barcode/

  126. Vinitha, M. R., Kumar, U. S., Aishwarya, K., Sabu, M., & Thomas, G. (2014). Prospects for discriminating Zingiberaceae species in India using DNA barcodes. Journal of Integrative Plant Biology, 56(8), 760–773. https://doi.org/10.1111/jipb.12189

    Article  CAS  PubMed  Google Scholar 

  127. Ragupathy, S., Faller, A. C., Shanmughanandhan, D., Kesanakurti, P., Shaanker, R. U., Ravikanth, G., Mathivanan, N., Song, J., Han, J., & Newmaster, S. (2019). Exploring DNA quantity and quality from raw materials to botanical extracts. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01935

    Article  PubMed  PubMed Central  Google Scholar 

  128. Spots, G. H. (2011). Genetic resources of Phyllanthus in Southern India. Phyllanthus Species: Scientific Evaluation and Medicinal Applications, 97.

  129. Srirama, R., Deepak, H. B., Senthilkumar, U., Ravikanth, G., Gurumurthy, B. R., Shivanna, M. B., Chandrasekaran, C. V., Agarwal, A., & Shaanker, R. U. (2012). Hepatoprotective activity of Indian Phyllanthus. Pharmaceutical Biology, 50(8), 948–953. https://doi.org/10.3109/13880209.2011.649858

    Article  CAS  PubMed  Google Scholar 

  130. Gaikwad, S. S., Ghate, H. V., Ghaskadbi, S. S., Patole, M. S., & Shouche, Y. S. (2012). DNA barcoding of nymphalid butterflies (Nymphalidae: Lepidoptera) from Western Ghats of India. Molecular Biology Reports, 39(3), 2375–2383. https://doi.org/10.1007/s11033-011-0988-7

    Article  CAS  PubMed  Google Scholar 

  131. Xu, S., Li, D., Li, J., Xiang, X., Jin, W., Huang, W., Jin, X., & Huang, L. (2015). Evaluation of the DNA Barcodes in Dendrobium (Orchidaceae) from Mainland Asia. PLoS ONE. https://doi.org/10.1371/journal.pone.0115168

    Article  PubMed  PubMed Central  Google Scholar 

  132. Roy, S., Tyagi, A., Shukla, V., Kumar, A., Singh, U. M., Chaudhary, L. B., Datt, B., Bag, S. K., Singh, P. K., Nair, N. K., Husain, T., & Tuli, R. (2010). Universal plant DNA barcode loci may not work in complex groups: A case study with Indian Berberis Species. PLoS ONE. https://doi.org/10.1371/journal.pone.0013674

    Article  PubMed  PubMed Central  Google Scholar 

  133. Biju, S., Garg, S., Gururaja, K., Shouche, Y., & Walujkar, S. A. (2014). DNA barcoding reveals unprecedented diversity in Dancing Frogs of India (Micrixalidae, Micrixalus): A taxonomic revision with description of 14 new species. Ceylon Journal of Science (Biological Sciences). https://doi.org/10.4038/cjsbs.v43i1.6850

    Article  Google Scholar 

  134. Mathew, G. (2010). Identification of Satyrine Butterflies of Peninsular India through DNA Barcodes. Kerala Forest Research Institute.

  135. Bhagwat, R. M., Dholakia, B. B., Kadoo, N. Y., Balasundaran, M., & Gupta, V. S. (2015). Two new potential barcodes to discriminate Dalbergia species. PLoS ONE, 10(11), e0142965. Retrieved from https://doi.org/10.1371/journal.pone.0142965

  136. Yu, M., Jiao, L., Guo, J., Wiedenhoeft, A. C., He, T., Jiang, X., & Yin, Y. (2017). DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species. Planta, 246(6), 1165–1176. https://doi.org/10.1007/s00425-017-2758-9

    Article  CAS  PubMed  Google Scholar 

  137. Lobovikov, M., Schoene, D., & Yping, L. (2012). Bamboo in climate change and rural livelihoods. Mitigation and Adaptation Strategies for Global Change, 17(3), 261–276. https://doi.org/10.1007/s11027-011-9324-8

    Article  Google Scholar 

  138. Kress, W. J., & Erickson, D. L. (2012). DNA barcodes: Methods and Protocols. In W. J. Kress & D. L. Erickson (Eds.), (pp. 3–8). Humana Press. https://doi.org/10.1007/978-1-61779-591-6_1

  139. Alacs, E. A., Georges, A., FitzSimmons, N. N., & Robertson, J. (2010). DNA detective: a review of molecular approaches to wildlife forensics. Forensic Science, Medicine, and Pathology, 6(3), 180–194. https://doi.org/10.1007/s12024-009-9131-7

    Article  CAS  PubMed  Google Scholar 

  140. Schindel, D. E., & Miller, S. E. (2005). DNA barcoding a useful tool for taxonomists. Nature, 435(7038), 17–18.

    Article  CAS  Google Scholar 

  141. Das, M., Bhattacharya, S., Singh, P., Filgueiras Tarciso S., & Pal, A. B. T.-A. in B. R. (2008). Bamboo taxonomy and diversity in the era of molecular markers. In Incorporating Advances in Plant Pathology (Vol. 47, pp. 225–268). Academic Press. https://doi.org/10.1016/S0065-2296(08)00005-0

  142. Schmidt, L., Fischer, M., & Oja, T. (2018). Two closely related species differ in their regional genetic differentiation despite admixing. AoB Plants, 10(1), ply007–ply007. https://doi.org/10.1093/aobpla/ply007

  143. Gui, Y. J., Wang, S., Quan, L. Y., Zhou, C. P., Long, S. B., Zheng, H. J., Jin, L., Zhang, X. Y., Ma, N. X., & Fan, L. J. (2007). Genome size and sequence composition of moso bamboo: A comparative study. Science in China Series C” Life Sciences, 50(5), 700–705. https://doi.org/10.1007/s11427-007-0081-6

    Article  CAS  PubMed  Google Scholar 

  144. Janzen, D. H., Hajibabaei, M., Burns, J. M., Hallwachs, W., Remigio, E., & Hebert, P. D. N. (2005). Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1835–1845. https://doi.org/10.1098/rstb.2005.1715

    Article  CAS  Google Scholar 

  145. Smith, M. A., Fisher, B. L., & Hebert, P. D. N. (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: The ants of Madagascar. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1825–1834. https://doi.org/10.1098/rstb.2005.1714

    Article  CAS  Google Scholar 

  146. Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., Husband, B. C., Percy, D. M., Hajibabaei, M., & Barrett, S. C. H. (2008). Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE. https://doi.org/10.1371/journal.pone.0002802

    Article  PubMed  PubMed Central  Google Scholar 

  147. Liu, J. I. E., Möller, M., Gao, L.-M., Zhang, D.-Q., & Li, D.-Z. (2011). DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Molecular Ecology Resources, 11(1), 89–100. https://doi.org/10.1111/j.1755-0998.2010.02907.x

  148. Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., van der Bank, M., D. Bogarin, K. S. Burgess, K. M. Cameron, M. Carine, J. Chacon, A. Clark, J. J. Clarkson, F. Conrad, D. S. Devey, C. S. Ford, T. A.J. Hedderson, M. L. Hollingsworth, B. C. Husband, L. J. …, Little, D. P. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794–12797. https://doi.org/10.1073/pnas.0905845106

  149. Drumwright, A. M., Allen, B. W., Huff, K. A., Ritchey, P. A., & Cahoon, A. B. (2011). Survey and DNA barcoding of Poaceae in flat rock cedar glades and Barrens State Natural Area, Murfreesboro, Tennessee. Castanea, 76(3), 300–310. https://doi.org/10.2179/11-005.1

    Article  Google Scholar 

  150. Hodkinson, T. R., Savolainen, V., Jacobs, S. W. L., Bouchenak-Khelladi, Y., Kinney, M. S., & Salamin, N. (2007). Supersizing: progress in documenting and understanding grass species richness. Reconstructing the tree of life: taxonomy and systematics of species rich taxa, 72, 275–298.

    Google Scholar 

  151. Kikkawa, H. S., Tsuge, K., & Sugita, R. (2016). Real-time PCR quantification of chloroplast DNA supports DNA barcoding of plant species. Molecular Biotechnology, 58(3), 212–219. https://doi.org/10.1007/s12033-016-9918-1

    Article  CAS  PubMed  Google Scholar 

  152. Hajiahmadi, Z., Talebi, M., & Sayed-Tabatabaei, B. E. (2013). Studying Genetic Variability of Pomegranate (Punica granatum L.) Based on Chloroplast DNA and Barcode Genes. Molecular Biotechnology, 55(3), 249–259. https://doi.org/10.1007/s12033-013-9676-2

  153. Hollingsworth, M. L., Andra Clark, A., Forrest, L. L., Richardson, J., Pennington, R. T., Long, D. G., Cowan, R., Chase, M. W., Gaudeu, M., & Hollingsworth, P. M. (2009). Selecting barcoding loci for plants: Evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Molecular Ecology Resources, 9(2), 439–457. https://doi.org/10.1111/j.1755-0998.2008.02439.x

    Article  CAS  PubMed  Google Scholar 

  154. Starr, J. R., Naczi, R. F. C., & Chouinard, B. N. (2009). Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae). Molecular Ecology Resources, 9(SUPPL. 1), 151–163. https://doi.org/10.1111/j.1755-0998.2009.02640.x

    Article  CAS  PubMed  Google Scholar 

  155. Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: The Coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE. https://doi.org/10.1371/journal.pone.0000508

  156. Singh, D., Pande, A., Kulkarni, S., Kimbahune, S., Hanwate, T., & Sawarkar, A. (2015). Innovation for crop quality certification using ICT. In 2015 7th International Conference on Communication Systems and Networks (COMSNETS) (pp. 1–6). https://doi.org/10.1109/COMSNETS.2015.7098725

  157. Hajibabaei, M., & Singer, G. A. C. (2009). Googling DNA sequences on the World Wide Web. BMC Bioinformatics, 10(14), S4. https://doi.org/10.1186/1471-2105-10-S14-S4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hanwater, T., Vaidya, M., & Sawarkar, A. (2014). Survey on: Integrated platform for Development Rural Agriculture in India using ICT platform. International Journal of Computer Science and Information Technologies, 5(2), 2030–2032. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.445.2588&rep=rep1&type=pdf

Download references

Acknowledgements

The authors are thankful to Director, CSIR-National Environmental Engineering Research Institute, Nagpur and Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur for providing necessary facilities for this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lal Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This review was approved by research committee of CSIR-NEERI, Nagpur and registered in library.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawarkar, A.D., Shrimankar, D.D., Kumar, M. et al. Traditional System Versus DNA Barcoding in Identification of Bamboo Species: A Systematic Review. Mol Biotechnol 63, 651–675 (2021). https://doi.org/10.1007/s12033-021-00337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00337-4

Keywords

Navigation