Skip to main content
Log in

Expression and Characterization of Recombinant Serratia liquefaciens Nucleases Produced with Baculovirus-mediated Silkworm Expression System

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Baculovirus-Bombyx mori protein expression system has mainly been used for translation of eukaryotic proteins. In contrast, information pertaining to bacterial protein expression using this system is not sufficient. Therefore, recombinant nucleases from Serratia liquefaciens (rSlNucAs) were expressed in a Baculovirus-B. mori protein expression system. rSlNucAs containing the native signal peptide (rSlNucA-NSP) or silkworm 30-K signal peptide (rSlNucA-30K) at the NH2-terminus were constructed to enable secretion into the extracellular fraction. Both rSlNucA-30K and rSlNucA-NSP were successfully secreted into hemolymph of B. mori larvae. Affinity-purified rSlNucAs showed high nuclease activity. Optimum pH was 7.5 and half of maximum activity was maintained between pH 7.0 and 9.5. Optimum temperature was 35 °C. rSlNucAs showed sufficient activity in twofold-diluted radioimmunoprecipitation assay buffer and undiluted, mild lysis buffer. Genomic DNA of Escherichia coli was efficiently digested by rSlNucAs in the bacterial lysate. The results in this study suggest that rSlNucAs expressed by the Baculovirus-B. mori protein expression system will be a useful tool in molecular biology. Functional recombinant protein of bacteria was produced by Baculovirus-B. mori protein expression system. This system may be highly suitable for bacterial extracellular protein secreted via Sec pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abebe-Akele, F., Tisa, L. S., Cooper, V. S., Hatcher, P. J., Abebe, E., & Thomas, W. K. (2015). Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BMC Genomics, 16, 531.

    Article  Google Scholar 

  2. Bagos, P. G., Nikolaou, E. P., Liakopoulos, T. D., & Tsirigos, K. D. (2010). Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics, 26, 2811–2817.

    Article  CAS  Google Scholar 

  3. Benedik, M. J., & Strych, U. (1998). Serratia marcescens and its extracellular nuclease. FEMS Microbiology Letters, 165, 1–13.

    Article  CAS  Google Scholar 

  4. Benham, A. M. (2012). Protein secretion and the endoplasmic reticulum. Cold Spring Harbor Perspectives in Biology, 4, a012872.

    Article  Google Scholar 

  5. Braun, V., & Schmitz, G. (1980). Excretion of a protease by Serratia marcescens. Archives of Microbiology, 124, 55–61.

    Article  CAS  Google Scholar 

  6. Bromke, B. J., & Hammel, J. M. (1979). Regulation of extracellular protease formation by Serratia marcescens. Canadian Journal of Microbiology, 25, 47–52.

    Article  CAS  Google Scholar 

  7. Costa, T. R., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M., & Waksman, G. (2015). Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nature Reviews Microbiology, 13, 343–359.

    Article  CAS  Google Scholar 

  8. Dauga, C., Grimont, F., & Grimont, P. A. (1990). Nucleotide sequences of 16S rRNA from ten Serratia species. Research in Microbiology, 141, 1139–1149.

    Article  CAS  Google Scholar 

  9. Eaves, G. N., & Jeffries, C. D. (1963). Isolation and properties of an exocellular nuclease of Serratia marcescens. Journal of Bacteriology, 85, 273–278.

    CAS  Google Scholar 

  10. Egami, I., Iiyama, K., Zhang, P., Chieda, Y., Ino, N., Hasegawa, K., et al. (2009). Insecticidal bacterium isolated from an ant lion larva from Munakata, Japan. Journal of Applied Entomology, 133, 117–124.

    Article  CAS  Google Scholar 

  11. Franke, I., Meiss, G., Blecher, D., Gimadutdinow, O., Urbanke, C., & Pingoud, A. (1998). Genetic engineering, production and characterisation of monomeric variants of the dimeric Serratia marcescens endonuclease. FEBS Letters, 425, 517–522.

    Article  CAS  Google Scholar 

  12. Franke, I., Meiss, G., & Pingoud, A. (1999). On the advantage of being a dimer, a case study using the dimeric Serratia nuclease and the monomeric nuclease from Anabaena sp. strain PCC 7120. Journal of Biological Chemistry, 274, 825–832.

    Article  CAS  Google Scholar 

  13. Friedhoff, P., Gimadutdinow, O., Rüter, T., Wende, W., Urbanke, C., Thole, H., & Pingoud, A. (1994). A procedure for renaturation and purification of the extracellular Serratia marcescens nuclease from genetically engineered Escherichia coli. Protein Expression and Purification, 5, 37–43.

    Article  CAS  Google Scholar 

  14. Fukushima, M., Iiyama, K., Yamashita, J., Furue, M., Tsuji, G., Imanishi, S., et al. (2013). Production of small antibacterial peptides using silkworm-baculovirus protein expression system. Preparative Biochemistry & Biotechnology, 43, 565–576.

    Article  CAS  Google Scholar 

  15. Futatsumori-Sugai, M., & Tsumoto, K. (2010). Signal peptide design for improving recombinant protein secretion in the baculovirus expression vector system. Biochemical and Biophysical Research Communications, 91, 931–935.

    Article  Google Scholar 

  16. Grimont, F., & Grimont, P. A. (2006). The genus Serratia. Prokaryotes, 6, 219–244.

    Google Scholar 

  17. Grimont, P. A., Irino, K., & Grimont, F. (1982). The Serratia liquefaciensS. proteamaculansS. grimesii complex: DNA relatedness. Current Microbiology, 7, 63–67.

    Article  CAS  Google Scholar 

  18. Gurung, N., Ray, S., Bose, S., & Rai, V. (2013). A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomedical Research International, 2013, 329121.

    Article  Google Scholar 

  19. Hasegawa, T., Minami, M., Okamoto, A., Tatsuno, I., Isaka, M., & Ohta, M. (2010). Characterization of a virulence- associated and cell-wall-located DNase of Streptococcus pyogenes. Microbiology, 156, 184–190.

    Article  CAS  Google Scholar 

  20. Hayashi, K., Lee, J. M., Tomozoe, Y., Kusakabe, T., & Kamiya, N. (2015). Heme precursor injection is effective for Arthromyces ramosus peroxidase fusion protein production by a silkworm expression system. Journal of Bioscience and Bioengineering, 120, 384–386.

    Article  CAS  Google Scholar 

  21. Heller, K. B. (1979). Lipolytic activity copurified with the outer membrane of Serratia marcescens. Journal of Bacteriology, 140, 1120–1122.

    CAS  Google Scholar 

  22. Heun, M., Binnenkade, L., Kreienbaum, M., & Thormann, K. M. (2012). Functional specificity of extracellular nucleases of Shewanella oneidensis MR-1. Applied and Environment Microbiology, 78, 4400–4411.

    Article  CAS  Google Scholar 

  23. Hong, S. M., Mon, H., Lee, J. M., & Kusakabe, T. (2014). Characterization and recombinant protein expression of ferritin light chain homologue in the silkworm, Bombyx mori. Insect Science, 21, 135–146.

    Article  CAS  Google Scholar 

  24. Hong, S. M., Sung, H. S., Kang, M. H., Kim, C. G., Lee, Y. H., Kim, D. J., et al. (2014). Characterization of Cryptopygus antarcticus endo-β-1,4-glucanase from Bombyx mori expression systems. Molecular Biotechnology, 56, 878–889.

    Article  CAS  Google Scholar 

  25. Ji, Y., Li, J., Qin, Z., Li, A., Gu, Z., Liu, X., et al. (2015). Contribution of nuclease to the pathogenesis of Aeromonas hydrophila. Virulence, 6, 515–522.

    Article  CAS  Google Scholar 

  26. Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292, 195–202.

    Article  CAS  Google Scholar 

  27. Kaibara, F., Iiyama, K., Chieda, Y., Lee, J. M., Kusakabe, T., Yasunaga-Aoki, C., & Shimizu, S. (2012). Construction of serralysin-like metalloprotease-deficient mutants of Serratia liquefaciens and their virulence in the silkworm, Bombyx mori. Journal of Insect Biotechnology and Sericology, 81, 55–61.

    CAS  Google Scholar 

  28. Kamata, R., Matsumoto, K., Okamura, R., Yamamoto, T., & Maeda, H. (1985). The serratial 56K protease as a major pathogenic factor in serratial keratitis. Clinical and experimental study. Ophthalmology, 92, 1452–1459.

    Article  CAS  Google Scholar 

  29. Lee, J. M., Mon, H., Banno, Y., Iiyama, K., & Kusakabe, T. (2012). Bombyx mori strains useful for efficient recombinant protein production using a baculovirus vector. Journal of Biotechnology & Biomaterials, S9, 003.

    Google Scholar 

  30. Lysenko, O. (1976). Chitinase of Serratia marcescens and its toxicity to insects. Journal of Invertebrate Pathology, 27, 385–386.

    Article  CAS  Google Scholar 

  31. Masuda, A., Xu, J., Mitsudome, T., Nagata, Y., Morokuma, D., Mon, H., et al. (2015). Mass production of an active peptide-N-glycosidase F using silkworm-baculovirus expression system. Molecular Biotechnology, 57, 735–745.

    Article  CAS  Google Scholar 

  32. Mitsudome, T., Mon, H., Xu, J., Li, Z., Lee, J. M., Patil, A. A., et al. (2015). Biochemical characterization of maintenance DNA methyltransferase DNMT-1 from silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 58, 55–65.

    Article  CAS  Google Scholar 

  33. Mitsudome, T., Xu, J., Nagata, Y., Masuda, A., Iiyama, K., Morokuma, D., et al. (2014). Expression, purification, and characterization of endo-β-N-acetylglucosaminidase H using baculovirus-mediated silkworm protein expression system. Applied Biochemistry and Biotechnology, 172, 3978–3988.

    Article  CAS  Google Scholar 

  34. Mon, H., Lee, J. M., Fukushima, M., Nagata, Y., Fujii, M., Xu, J., et al. (2013). Production and characterization of the celery mismatch endonuclease CEL II using baculovirus/silkworm expression system. Applied Microbiology and Biotechnology, 97, 6813–6822.

    Article  CAS  Google Scholar 

  35. Monreal, J., & Reese, E. T. (1969). The chitinase of Serratia marcescens. Canadian Journal of Microbiology, 15, 689–696.

    Article  CAS  Google Scholar 

  36. Motohashi, T., Shimojima, T., Fukagawa, T., Maenaka, K., & Park, E. Y. (2005). Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochemical and Biophysical Research Communications, 326, 564–569.

    Article  CAS  Google Scholar 

  37. Natale, P., Brüser, T., & Driessen, A. J. (2008). Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochimica et Biophysica Acta, 1778, 1735–1756.

    Article  CAS  Google Scholar 

  38. O’Reilly, D. R., Miller, L., & Luckow, V. A. (1992). Baculovirus expression vectors: a laboratory manual. New York: Oxford University Press.

    Google Scholar 

  39. Rangarajan, E. S., & Shankar, V. (2001). Sugar non-specific endonucleases. FEMS Microbiology Reviews, 25, 583–613.

    Article  CAS  Google Scholar 

  40. Satone, H., Akahoshi, E., Nakamura, A., Lee, J. M., Honda, M., Shimasaki, Y., et al. (2013). Expression and functional characterization of recombinant tributyltin-binding protein type 2. Journal of Toxicological Sciences, 38, 885–890.

    Article  CAS  Google Scholar 

  41. Satone, H., Lee, J. M., Oba, Y., Kusakabe, T., Akahoshi, E., Miki, S., et al. (2011). Tributyltin-binding protein type 1, a lipocalin, prevents inhibition of osteoblastic activity by tributyltin in fish scales. Aquatic Toxicology, 103, 79–84.

    Article  CAS  Google Scholar 

  42. Soejima, Y., Lee, J. M., Nagata, Y., Mon, H., Iiyama, K., Kitano, H., et al. (2013). Comparison of signal peptides for efficient protein secretion in the baculovirus-silkworm system. Central European Journal of Biology, 8, 1–7.

    CAS  Google Scholar 

  43. Stehr, F., Kretschmar, M., Kröger, C., Hube, B., & Schäfer, W. (2003). Microbial lipases as virulence factors. Journal of Molecular Catalysis. B, Enzymatic, 22, 347–355.

    Article  CAS  Google Scholar 

  44. Suh, Y., Jin, S., Ball, T. K., & Benedik, M. J. (1996). Two-step secretion of the Serratia marcescens extracellular nuclease. Journal of Bacteriology, 178, 3771–3778.

    CAS  Google Scholar 

  45. Taira, E., Iiyama, K., Mon, H., Mori, K., Akasaka, T., Tashiro, K., et al. (2014). Draft genome sequence of entomopathogenic Serratia liquefaciens strain FK01. Genome Announcements, 2, e00609–e00614.

    Article  Google Scholar 

  46. Wickner, W., Driessen, A. J., & Hartl, F. U. (1991). The enzymology of protein translocation across the Escherichia coli plasma membrane. Annual Review of Biochemistry, 60, 101–124.

    Article  CAS  Google Scholar 

  47. Zhang, X., Shen, W., Lu, Y., Zheng, X., Xue, R., Cao, G., et al. (2011). Expression of UreB and HspA of Helicobacter pylori in silkworm pupae and identification of its immunogenicity. Molecular Biology Reports, 38, 3173–3180.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The cost of publication was supported in part by a Research Grant for Young Investigators from the Faculty of Agriculture, Kyushu University. We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Iiyama.

Ethics declarations

Conflict of Interest

No conflict of interest declared.

Additional information

Kazuhiro Iiyama and Jae Man Lee contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iiyama, K., Lee, J.M., Tatsuke, T. et al. Expression and Characterization of Recombinant Serratia liquefaciens Nucleases Produced with Baculovirus-mediated Silkworm Expression System. Mol Biotechnol 58, 393–403 (2016). https://doi.org/10.1007/s12033-016-9937-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9937-y

Keywords

Navigation