Skip to main content

Advertisement

Log in

A Novel Three Domains Glycoside Hydrolase Family 3 from Sclerotinia sclerotiorum Exhibits β-Glucosidase and Exoglucanase Activities: Molecular, Biochemical, and Transglycosylation Potential Analysis

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous fungus Sclerotinia sclerotiorum produces a complete set of cellulolytic enzymes. We report here the purification and the biochemical characterization of a new β-glucosidase from S. sclerotiorum which belongs to the family 3 of glycoside hydrolases and that was named as SsBgl3. After two size-exclusion chromatography steps, purified protein bands of 80 and 90 kDa from SDS-PAGE were subjected to a mass spectrometry analysis. The results displayed four peptides from the upper band belonging to a polypeptide of 777 amino acids having a calculated molecular weight of 83.7 kDa. Biochemical analysis has been carried out to determine some properties. We showed that this SsBgl3 protein displayed both β-glucosidase and exoglucanase activities with optimal activity at 55 °C and at pH 5. The transglycosylation activity was investigated using gluco-oligosaccharides TLC analysis. The molecular modeling and comparison with different crystal structures of β-glucosidases showed that SsBgl3 putative protein present three domains. They correspond to an (α/β)8 domain TIM barrel, a five-stranded α/β sandwich domain (both of which are important for active-site organization), and a C-terminal fibronectin type III domain. Enzyme engineering will be soon investigated to identify the key residues for the catalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gruno, M., Valjamae, P., Pettersson, G., & Johansson, G. (2004). Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnology and Bioengineering, 86, 503–511.

    Article  CAS  Google Scholar 

  2. Kaur, J., Chadha, B. S., Kumar, B. A., Kaur, G., & Saini, H. S. (2007). Purification and characterization of ß-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology, 10(2), 260–270.

    Article  CAS  Google Scholar 

  3. Wilson, D. B. (2009). Cellulases and biofuels. Current Opinion in Biotechnology, 20, 295–299.

    Article  CAS  Google Scholar 

  4. Sukumaran, R. K., Surender, V. J., Sindhu, R., Binod, P., et al. (2010). Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresource Technology, 101, 4826–4833.

    Article  CAS  Google Scholar 

  5. Vlasenko, E., Schulein, M., Cherry, J., & Xu, F. (2010). Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresource Technology, 101, 2405–2411.

    Article  CAS  Google Scholar 

  6. Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial beta-glucosidases: Cloning, properties, and applications. Critical Reviews in Biotechnology, 22, 375–407.

    Article  CAS  Google Scholar 

  7. Shaikh, F. A., & Withers, S. G. (2008). Teaching old enzymes new tricks: Engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis. Biochemistry and Cell Biology, 86, 169–177.

    Article  CAS  Google Scholar 

  8. Saibi, W., Amouri, B., & Gargouri, A. (2007). Purification and biochemical characterization of a transglucosilating β-glucosidase of Stachybotrys strain. Applied Microbiology and Biotechnology, 77(2), 293–300.

    Article  CAS  Google Scholar 

  9. Smaali, I., Maugard, T., Limam, F., Legoy, M. D., & Marzouki, N. (2007). Efficient synthesis of gluco-oligosaccharides and alkyl-glucosides by transglycosylation activity of β-glucosidase from Sclerotinia sclerotiorum. World Journal of Microbiology & Biotechnology, 23(1), 145–149.

    Article  CAS  Google Scholar 

  10. Han, Y., & Chen, H. (2008). Characterization of beta-glucosidase from corn stover and its application in simultaneous saccharification and fermentation. Bioresource Technology, 99, 6081–6087.

    Article  CAS  Google Scholar 

  11. Jeya, M., Joo, A. R., Lee, K. M., Tiwari, M. K., et al. (2010). Characterization of beta-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied Microbiology and Biotechnology, 86, 1473–1484.

    Article  CAS  Google Scholar 

  12. Pontoh, J., & Low, N. H. (2002). Purification and characterization of beta-glucosidase from honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology, 32, 679–690.

    Article  CAS  Google Scholar 

  13. Saloheimo, M., Nakari-Setala, T., Tenkanen, M., & Penttila, M. (1997). cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. European Journal of Biochemistry/FEBS, 249, 584–591.

    Article  CAS  Google Scholar 

  14. Sorensen, A., Lubeck, M., Lubeck, P. S., & Ahring, B. K. (2013). Fungal beta-glucosidases: A bottleneck in industrial use of lignocellulosic materials. Biomolecules, 3, 612–631.

    Article  Google Scholar 

  15. Varghese, J. N., Hrmova, M., & Fincher, G. B. (1999). Three-dimensional structure of a barley beta-d-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure, 7, 179–190.

    Article  CAS  Google Scholar 

  16. Pozzo, T., Pasten, J. L., Karlsson, E. N., & Logan, D. T. (2010). Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana: A thermostable three-domain representative of glycoside hydrolase 3. Journal of Molecular Biology, 397, 724–739.

    Article  CAS  Google Scholar 

  17. Kentaro, S., Jun-Ichi, S., Young-Woo, N., Toru, N., Shuji, T., Takayoshi, W., et al. (2013). Crystal structures of glycoside hydrolase family 3 beta-glucosidase 1 from Aspergillus aculeatus. Biochemical Journal, 452(2), 211–221.

    Article  Google Scholar 

  18. Mandels, M., & Weber, J. (1969). The production of cellulases. Advances in Chemistry Series, 95, 391–414.

    Article  CAS  Google Scholar 

  19. Deshpande, M. V., Eriksson, K. E., & Pettersson, L. G. (1984). An assay for selective determination of exo-1,4,-beta-glucanases in a mixture of cellulolytic enzymes. Analytical Biochemistry, 138, 481–487.

    Article  CAS  Google Scholar 

  20. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  21. Laemmli, U. K., Molbert, E., Showe, M., & Kellenberger, E. (1970). Form-determining function of the genes required for the assembly of the head of bacteriophage T4. Journal of Molecular Biology, 49, 99–113.

    Article  CAS  Google Scholar 

  22. Blum, H., Beier, H., & Gross, B. (1987). Improved silver staining of plant proteins RNA and DNA in polyacrylamide gels. Electrophoresis, 8, 93–99.

    Article  CAS  Google Scholar 

  23. Bordoli, L., & Schwede, T. (2012). Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. Methods in Molecular Biology, 857, 107–136.

    Article  CAS  Google Scholar 

  24. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  25. Smaali, M. I., Michaud, N., Marzouki, N., Legoy, M. D., & Maugard, T. (2004). Comparison of two beta-glucosidases for the enzymatic synthesis of beta-(1-6)-beta-(1-3)-gluco-oligosaccharides. Biotechnology Letters, 26, 675–679.

    Article  CAS  Google Scholar 

  26. Mouelhi, R., Abidi, F., Galai, S., & Marzouki, M. N. (2014). Immobilized Sclerotinia sclerotiorum invertase to produce invert sugar syrup from industrial beet molasses by-product. World Journal of Microbiology & Biotechnology, 30, 1063–1073.

    Article  CAS  Google Scholar 

  27. Chahed, H., Ezzine, A., Mlouka, A. B., Hardouin, J., et al. (2014). Biochemical characterization, molecular cloning, and structural modeling of an interesting beta-1,4-glucanase from Sclerotinia sclerotiorum. Molecular Biotechnology, 56, 340–350.

    Article  CAS  Google Scholar 

  28. Ellouze, O., Mejri, M., Smaali, I., Limam, F., & Marzouki, M. N. (2007). Induction, properties and application of xylanase activity from Sclerotinia sclerotiorum S2 fungus. Journal of Food and Biochemistry, 31, 96–107.

    Article  Google Scholar 

  29. Park, T. H., Choi, K. W., Park, C. S., Lee, S. B., et al. (2005). Substrate specificity and transglycosylation catalyzed by a thermostable beta-glucosidase from marine hyperthermophile Thermotoga neapolitana. Applied Microbiology and Biotechnology, 69, 411–422.

    Article  CAS  Google Scholar 

  30. Parry, N. J., Beever, D. E., Owen, E., Vandenberghe, I., et al. (2001). Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. The Biochemical Journal, 353, 117–127.

    Article  CAS  Google Scholar 

  31. Nakkharat, P., & Haltrich, D. (2006). Purification and characterisation of an intracellular enzyme with beta-glucosidase and beta-galactosidase activity from the thermophilic fungus Talaromyces thermophilus CBS 236.58. Journal of Biotechnology, 123, 304–313.

    Article  CAS  Google Scholar 

  32. Pitson, S. M., Seviour, R. J., & McDougall, B. M. (1997). Purification and characterization of an extracellular beta-glucosidase from the filamentous fungus Acremonium persicinum and its probable role in beta-glucan degradation. Enzyme and Microbial Technology, 21, 182–190.

    Article  CAS  Google Scholar 

  33. Seidle, H. F., Marten, I., Shoseyov, O., & Huber, R. E. (2004). Physical and kinetic properties of the family 3 beta-glucosidase from Aspergillus niger which is important for cellulose breakdown. The Protein Journal, 23, 11–23.

    Article  CAS  Google Scholar 

  34. Harhangi, H. R., Steenbakkers, P. J., Akhmanova, A., Jetten, M. S., et al. (2002). A highly expressed family 1 beta-glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. Biochimica et Biophysica Acta, 1574, 293–303.

    Article  CAS  Google Scholar 

  35. Christakopoulos, P., Goodenough, P. W., Kekos, D., Macris, B. J., et al. (1994). Purification and characterisation of an extracellular beta-glucosidase with transglycosylation and exo-glucosidase activities from Fusarium oxysporum. European Journal of Biochemistry/FEBS, 224, 379–385.

    Article  CAS  Google Scholar 

  36. Yang, S., Jiang, Z., Yan, Q., & Zhu, H. (2008). Characterization of a thermostable extracellular beta-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. Journal of Agricultural and Food Chemistry, 56, 602–608.

    Article  CAS  Google Scholar 

  37. Fujita, Y., Ito, J., Ueda, M., Fukuda, H., & Kondo, A. (2004). Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Applied and Environmental Microbiology, 70(2), 1207–1212.

    Article  CAS  Google Scholar 

  38. Yamada, R., Nakatani, Y., Ogino, C., & Kondo, A. (2013). Efficient direct ethanol production from cellulose by cellulase-and cellodextrin transporter-co-expressing Saccharomyces cerevisiae. AMB Express, 3(1), 1–7.

    Article  Google Scholar 

  39. Lima, M. A., Oliveira-Neto, M., Kadowaki, M. A., Rosseto, F. R., et al. (2013). Aspergillus niger beta-glucosidase has a cellulase-like tadpole molecular shape: Insights into glycoside hydrolase family 3 (GH3) beta-glucosidase structure and function. The Journal of Biological Chemistry, 288, 32991–33005.

    Article  CAS  Google Scholar 

  40. Kalyani, D., Lee, K. M., Tiwari, M. K., Ramachandran, P., et al. (2012). Characterization of a recombinant aryl beta-glucosidase from Neosartorya fischeri NRRL181. Applied Microbiology and Biotechnology, 94, 413–423.

    Article  CAS  Google Scholar 

  41. Chen, P., Fu, X., Ng, T. B., & Ye, X. Y. (2011). Expression of a secretory beta-glucosidase from Trichoderma reesei in Pichia pastoris and its characterization. Biotechnology Letters, 33, 2475–2479.

    Article  CAS  Google Scholar 

  42. Smaali, M. I., Gargouri, M., Limmam, F., Maugard, T., Legoy, M. D., & Marzouki, N. (2004). A β-glucosidase from Sclerotinia sclerotiorum: Biochemical characterization and use in oligosaccharides synthesis. Applied Biochemistry and Biotechnology, 112, 63–78.

    Article  Google Scholar 

  43. Decker, C. H., Visser, J., & Schreier, P. (2000). Beta-glucosidases from five black Aspergillus species: Study of their physico-chemical and biocatalytic properties. Journal of Agricultural and Food Chemistry, 48, 4929–4936.

    Article  CAS  Google Scholar 

  44. Jager, S., Brumbauer, A., Feher, E., Reczey, K., & Kiss, L. (2001). Production and characterization of beta-glucosidases from different Aspergillus strains. World Journal of Microbiology & Biotechnology, 17, 455–461.

    Article  CAS  Google Scholar 

  45. Korotkova, O. G., Semenova, M. V., Morozova, V. V., Zorov, I. N., et al. (2009). Isolation and properties of fungal beta-glucosidases. Biochemistry. Biokhimiia, 74, 569–577.

    Article  CAS  Google Scholar 

  46. Riou, C., Salmon, J. M., Vallier, M. J., Gunata, Z., & Barre, P. (1998). Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Applied and Environmental Microbiology, 64, 3607–3614.

    CAS  Google Scholar 

  47. Wiseman, A. (1982). Fungal and other beta-d-glucosidases—Their properties and application. Enzyme Microbiology and Biotechnology, 4, 73–78.

    Article  Google Scholar 

  48. Smaali, M. I., Gourgouri, M., Limam, F., Fattouch, S., Maugard, T., Legoy, M. D., & Marzouki, N. (2003). Production, purification, and biochemical characterization of two β-glucosidases from Sclerotinia sclerotiorum. Applied Biochemistry and Biotechnology, 111, 29–39.

    Article  Google Scholar 

  49. Zhou, W., Irwin, D. C., Escovar-Kousen, J., & Wilson, D. B. (2004). Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry, 43, 9655–9663.

    Article  CAS  Google Scholar 

  50. Karkehabadi, S., Helmich, K. E., Kaper, T., Hansson, H., Mikkelsen, N. E., Gudmundsson, M., et al. (2014). Biochemical characterization and crystal structures of a fungal family 3 β-Glucosidase, Cel3A from Hypocrea jecorina. Journal of Biological Chemistry, 289(45), 31624–31637.

    Article  CAS  Google Scholar 

  51. Brzobohaty, B., Moore, I., Kristoffersen, P., Bako, L., et al. (1993). Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science, 262, 1051–1054.

    Article  CAS  Google Scholar 

  52. Easen, A. (1993). Beta-glucosidases. Biochemistry and molecular biology. Washington, DC: American Chemical Society.

    Book  Google Scholar 

  53. de la Mata, I., Castillon, M. P., Dominguez, J. M., Macarron, R., & Acebal, C. (1993). Chemical modification of beta-glucosidase from Trichoderma reesei QM 9414. Journal of Biochemistry, 114, 754–759.

    Google Scholar 

  54. Bisaria, V. S., & Mishra, S. (1989). Regulatory aspects of cellulase biosynthesis and secretion. Critical Reviews in Biotechnology, 9, 61–103.

    Article  CAS  Google Scholar 

  55. Tomme, P., Warren, R. A., & Gilkes, N. R. (1995). Cellulose hydrolysis by bacteria and fungi. Advances in Microbial Physiology, 37, 1–81.

    Article  CAS  Google Scholar 

  56. Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 127, 500–507.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB) in the National Institute of Applied Sciences and Technology of Tunis, University of Carthage financed this work. The Tunisian Ministry of High Education, Scientific Research and Technology is gratefully acknowledged for the financial support of the training program. The laboratory of polymers, biopolymers and surfaces (PBS-UMR 6270) of Rouen is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifa Chahed.

Ethics declarations

Conflict of interest

The authors declare no commercial or financial conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahed, H., Ezzine, A., Mlouka, M.A.B. et al. A Novel Three Domains Glycoside Hydrolase Family 3 from Sclerotinia sclerotiorum Exhibits β-Glucosidase and Exoglucanase Activities: Molecular, Biochemical, and Transglycosylation Potential Analysis. Mol Biotechnol 57, 993–1002 (2015). https://doi.org/10.1007/s12033-015-9892-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9892-z

Keywords

Navigation