Skip to main content
Log in

Immobilized Sclerotinia sclerotiorum invertase to produce invert sugar syrup from industrial beet molasses by product

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The fungus Sclerotinia sclerotiorum produces invertase activity during cultivation on many agroindustrial residues. The molasses induced invertase was purified by DEAE-cellulose chromatography. The molecular mass of the purified enzyme was estimated at 48 kDa. Optimal temperature was determined at 60 °C and thermal stability up to 65 °C. The enzyme was stable between pH 2.0 and 8.0; optimum pH was about 5.5. Apparent Km and Vmax for sucrose were estimated to be respectively 5.8 mM and 0.11 μmol/min. The invertase was activated by β-mercaptoethanol. Free enzyme exhibited 80 % of its original activity after two month’s storage at 4 °C and 50 % after 1 week at 25 °C. In order to investigate an industrial application, the enzyme was immobilized on alginate and examined for invert sugar production by molasses hydrolysis in a continuous bioreactor. The yield of immobilized invertase was about 78 % and the activity yield was 59 %. Interestingly the immobilized enzyme hydrolyzed beet molasses consuming nearly all sucrose. It retained all of its initial activity after being used for 4 cycles and about 65 % at the sixth cycle. Regarding productivity; 20 g/l of molasses by-product gave the best invert sugar production 46.21 g/day/100 g substrate related to optimal sucrose conversion of 41.6 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberto F, Bignon C, Sulzenbacher G, Henrissat B, Czjzek M (2004) The three dimensional structure of invertase (β- fructosidase) from Thermotoga maritime reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J Biol Chem 279:18903–18910

    Article  CAS  Google Scholar 

  • Álvaro-Benito M, Abreu M, Fernández-Arrojo L, Plou FJ, Jiménez-Barbero J, Ballesteros A, Polaina J, Fernández- Lobato M (2007) Characterization of fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. J Biotechnol 132:75–81

    Article  Google Scholar 

  • Arica YM, Bayramoglu G (2006) Invertase reversibly immobilized onto polyethylenimine-grafted poly(GMA- MMA) beads for sucrose hydrolysis. J Mol Catalysis 38:131–138

    Article  CAS  Google Scholar 

  • Atiyeh H, Duvnjak Z (2002) Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858. Biotechnol Progress 18:234–239

    Article  CAS  Google Scholar 

  • Bagal D, Karve MS (2006) Entrapment of plant invertase within novel composite of agarose guar gum biopolymer membrane. Anal Chim Acta 555(2):316–321

    Article  CAS  Google Scholar 

  • Bakker WAM, Knitel JT, Tramper J, De Gooijer CD (1994) Sucrose Conversion by Immobilized Invertase in a Multiple Air-Lift Loop Bioreactor. Biotechnol Prog 10:277–283

    Article  CAS  Google Scholar 

  • Belcarz A, Ginalska G, Penel C (2002) The novel non glycosylated invertase from Candida utilis. J. Biochem and Biophys Acta 1594:40–53

    CAS  Google Scholar 

  • Berto MI, Gratão ACA, Silveira V Jr, Vitali AA (2003) Rheology of sucrose-cmc model solution. J Text Stud 34:391–400

    Article  Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chaudhuri A, Maheshwari R (1996) A novel invertase from a thermophilic fungus Thermomyces lanuginosus: it requirement of thiol and protein for activation. Arch Biochem Biophys 327(1):98–106

    Article  CAS  Google Scholar 

  • De la Vega M, Cejudo F, Paneque A (1991) Purification and properties of an extracellular invertase from Azotobacter chroococcum. Enzyme Microb Technol 13:267–271

    Article  Google Scholar 

  • Elibol M, Moreira AR (2003) Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinobacter turnirae. Process Biochem 38:1445–1450

    Article  CAS  Google Scholar 

  • Farag AM, Hassan MA (2004) Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enz Microb Technol 34:85–93

    Article  CAS  Google Scholar 

  • Gargouri M, Issam S, Thierry M, Marie Dominique L, Marzouki MN (2006) Fungus β-glycosidases: immobilization and use in alkyl-β-glycoside synthesis. J Mol Catal B Enzym 29:89–94

    Article  Google Scholar 

  • Girelli AM, Mattei E (2005) Application of immobilized enzyme reactor in on-line high performance liquid chromatography: a review. J Chromatogr B 819:3–16

    Article  CAS  Google Scholar 

  • Gogoi BK, Pillai KR, Nigram JN, Bezbaruah RL (1998) Extracellular alpha-amylase and invertase from amylolytic yeast Saccharomycopsis fibuligera. Indian J Microbiol 38:15–19

    Google Scholar 

  • Gomez S, Augur C, Viniegra G (2000) Invertase production by Aspergillus níger in submerged and solid-state fermentation. Biotechnol Lett 22:1255–1258

    Article  Google Scholar 

  • Gomez L, Ramirez HL, Villalonga ML, Hernandez J, Villalonga R (2006) Immobilization of chitosan-modified invertase on alginate-coated chitin support via polyelectrolyte complex formation. Enzyme Microb Technol 38:22–27

    Article  CAS  Google Scholar 

  • Guimaraes LHS, Somera AF, Terenzi HF, Polizeli ML, Jorge JA (2009) Production of fructofuranosidase by Aspergillus niveus using agroindustrial residues as carbon sources: characterization of an intracellular enzyme accumulated in the presence of glucose. Process Biochem 44:237–241

    Article  CAS  Google Scholar 

  • Haroldo YK, Hélia HS (2010) Effect of concentration and substrate flow rate on isomaltulose production from sucrose by Erwinia sp cells immobilized in calcium-alginate using packed bed reactor. Appl Biochem Biotechnol 162:89–102

    Article  Google Scholar 

  • Hernalsteens S, Maugeri F (2008) Partial purification and characterization of extracellular fructofuranosidase with transfructosylating activity from Candida sp. Food Bioprocess Technol 3:568–576

    Article  Google Scholar 

  • Herwig C, Doerries C, Marison I, Von U (2001) Quantitative analysis of the regulation scheme of invertase expression in Saccharomyces cerevisiae. Biotechnol Bioeng 75:247–258

    Article  Google Scholar 

  • Issam S, Souhir J, Asma S, Murielle M, Nathalie A, Nejib M (2012) Enzymatic synthesis of fructooligosaccharides from date by-products using an immobilized crude enzyme preparation of β-D-fructofuranosidase fromAspergillus awamori NBRC 4033. Biotechnol Bioprocess Eng 17:385–392

    Article  Google Scholar 

  • Kotwal SM, Shankar V (1997) Preparation and properties of Sclerotium rolfsii invertase immobilized on Indion 48- R. Appl Biochem Biotechnol 62:151–158

    Article  CAS  Google Scholar 

  • Kurup AS, Subramani HJ, Hidajat K, Ray AK (2005) Optimal design and operation of SMB bioreactor for sucrose inversion. Chem Eng J 108:19–33

    Article  CAS  Google Scholar 

  • L’Hocine L, Wang Z, Jiang B, Xu S (2000) Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J Biotechnol 81:73–84

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Linde D, Macias I, Fernández-Arrojo L, Plou FJ, Jiménez A, Fernández-Lobato M (2009) Molecular and biochemical characterization of a β-fructofuranosidase from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 75:1065–1073

    Article  CAS  Google Scholar 

  • Mamma D, Kourtoglou E, Christakopoulos P (2008) Fungal multienzyme production on industrial by-products of the citrus-processing industry. Biores Technol 99:2373–2383

    Article  CAS  Google Scholar 

  • Marques LLM, Buzato JB, Celligoi MAPC (2006) Effect of raffinose and ultrasound pulses on invertase release by free and immobilized Saccharomyces cerevisiae in loofa (Luffa cylindrical) sponge. Braz Arch Biol Technol 49:873–880

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mona MR, Mohamed UN (2009) Production, purification and characterization of extracellular invertase from Saccharomyses Cerevisiae NRRL Y-12632 by Solid-State fermentation of red carrot residue. Aust J Basic Appl Sci 3:1910–1919

    Google Scholar 

  • Müfrettin MS (2011) Investigation of Yeast Invertase Immobilization onto Cupric Ion-Chelated, Porous, and Biocompatible Poly (Hydroxyethyl Methacrylate-n-Vinyl Imidazole) Microspheres. Appl Biochem Biotechnol 163:1020–1037

    Article  Google Scholar 

  • Nakane K, Ogihara T, Ogata N, Kurokawa YJ (2000) Entrap-immobilization of invertase on composite gel fiber of cellulose acetate and zirconium alkoxide by sol-gel process. J Appl Polym Sci 81:2084–2088

    Article  Google Scholar 

  • Pabyton GC, Frank NW, Roberto AS, José LLF, Maria CBP (2011) Kinetics and bioreactor studies of immobilized invertase on polyurethane rigid adhesive foam. Bioresour Technol 102:513–518

    Article  Google Scholar 

  • Rubio MC, Runco R, Navarro AR (2002) Invertase from a strain of Rhodotorula glutinis. Phytochemical 61:605–609

    Article  CAS  Google Scholar 

  • Shafiq K, Ali S, Haq I (2003) Time course study for yeast invertase production by submerged fermentation. J Bacteriol 3:984–988

    Google Scholar 

  • Shaheen A, Farman AS, Hafeez URM, Suhail AS, Aziza B, Muhammad IR (2011) Hyper production of ethanol from cane molasses at optimized agitational intensity using indigenous Thermotolerant Kluyveromyces Marxianu. Aust J Basic Appl Sci 5:750–754

    Google Scholar 

  • Sirisansaneeyakul S, Jitbanjongkit S, Prasomsart N, Luangpituksa P (2000) Production of β-fructofuranosidase from Aspergillus niger ATCC20611. Kasetsart J Nat Sci 34:378–386

    CAS  Google Scholar 

  • Smaali MI, Gargouri M, Limam F, Fattouch S, Maugard T, Legoy MD, Marzouki MN (2003) Production, purification and biochemical characterization of two glucosidases from Sclerotinia sclerotiorum. App Bioch Biotechnol 111:29–40

    Article  Google Scholar 

  • Sotiropoulou S, Chaniotakis NA (2003) Carbon nanotube array-based biosensor. Anal Bioanal Chem 375:103–105

    CAS  Google Scholar 

  • Tanriseven A, Doğan S (2001) Immobilization of invertase within calcium alginate gel capsules. Process Biochem 36:1081–1083

    Article  CAS  Google Scholar 

  • Torres R, Mateo C, Fuentes M, Palomo JM, Ortiz C, Fernández LR, Guisan JM (2002) Reversible Immobilization of Invertase on sepabeads coated with polyethyleneimine: optimization of the biocatalyst’s stability. Biotechnol Prog 18:1221–1226

    Article  CAS  Google Scholar 

  • Tümtürk H, Arslan F, Disli A, Tufan Y (2000) Immobilization of invertase attached to a granular dimer acid-co- alkyl polyamine. Food Chem 69:5–9

    Article  Google Scholar 

  • Uma C, Gomathi D, Muthulakshmi C, Gopalakrishnan VK (2010) Production, purification and characterization of invertase by Aspergillus flavus using fruit peel waste as substrate. Adv Biol Res 4:31–36

    CAS  Google Scholar 

  • Vitali AA, Rao MA (1982) Flow behavior of guava puree as a function of temperature and concentration. J Text Stud 13:275–289

    Article  Google Scholar 

  • Wang ZG, Wang Y, Xu H, Li G, Xu ZK (2009) Carbon nanotube-filled nanofibrous membranes electrospun from poly(acrylonitrile- co -acrylic acid) for glucose biosensor. J Phys Chem C 113:2955–2960

    Article  CAS  Google Scholar 

  • Ye N, Yun W, Zhihao S (2012) Butanol production from cane molasses by Clostridium saccharobutylicum DSM 13864: batch and semicontinuous fermentation. Appl Biochem Biotechnol 166:1896–1907

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial project of LIP-MB Laboratory, INSAT, Carthage University, Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refka Mouelhi.

Additional information

Ferid Abidi and Galai Said have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouelhi, R., Abidi, F., Galai, S. et al. Immobilized Sclerotinia sclerotiorum invertase to produce invert sugar syrup from industrial beet molasses by product. World J Microbiol Biotechnol 30, 1063–1073 (2014). https://doi.org/10.1007/s11274-013-1525-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1525-8

Keywords

Navigation